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Abstract: The ferric reduction oxidase (FRO) gene family is involved in various biological processes
widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate
signaling networks in response to a number of abiotic stresses. Our study describes the identification,
characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in
Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire
FRO genes have been divided into seven clades according to close similarity in biological and
functional behavior. Three conserved domains were common in FRO genes while in two FROs sub
genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and
OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated
that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum
in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different
abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under
heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni
treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and
Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes
under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work
may provide the foundation for further functional characterization of rice FRO genes family.

Keywords: FRO; ferric reduction oxidase; evolutionary relationship; gene expression; abiotic and
metals stresses

1. Introduction

The plant growth and development greatly affected by the imbalance supply of mineral nutrition,
consequently lower the crop productivity [1]. The most crucial transition micronutrient, iron (Fe), is
found almost in all living organism, contributing to the redox centers of proteins which are essential
for respiration, biosynthesis of chlorophyll and photosynthesis [2]. The rapid changes in the oxidative
state of iron stimulate cellular function, regulation, electron transport and various other metabolic
functions [3–6]. The gene regulation networks may alter the expression level in response to Fe
toxicity [7], where the transporters and transcription factors are the key factors which are involved in
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iron translocation [8–11]. Therefore, the regulation of genes related to iron stress may help in plant
adaptation against adverse conditions [12].

The ferric reduction oxidases (FROs) gene encoding ferric reductase activity is executed by the
ferric chelate reductase (FCR) enzyme which is mainly positioned in roots and shoots [13]. The FROs
cover in the superfamily of flavocytochrome located in the cellular membrane that transfer electrons
from intracellular donors to extracellular acceptors such as iron or molecular oxygen [14]. The major
functional domains of FRO genes consist of six membrane-spanning regions, two heme, or ferric
reductases-like, transmembrane components, which are a highly conserved core protein throughout
the flavocytochromes family and crucial for cell surface ferric reductase activity [15,16]. The flavin
adenine dinucleotide (FAD-binding-8) and nicotinamide adenine dinucleotide (NAD-binding-6)
domains likely coordinate two intramembranous heme groups leading to superoxide formation
and are instrumental for electron transfer [15,17]. The FRO homologs are universally present in a
broad range of organisms, including fungi, animals and higher plants [18]. The yeast ferric reductases
(FREs), which are considered the isoforms of FROs, are involved in the reduction of iron and copper
reported in fungi [19,20]. In animals, seven NADPH oxidase (nicotinamide adenine dinucleotide
phosphate-oxidase, NOX) genes have been noted, designated as NOX1~5, DUOX1 and DUOX2 [18,21].
In higher plants, FRO genes have been reported in Arabidopsis [22], rice [16], pea [23], and tomato [24].
Thereafter, 50 FRO genes were identified in plants [25]. The plant FROs are expressed in different
tissues depending on their locations within cell compartments and are responsible for iron homeostasis,
transport and stress response [26]. Ferric-chelate reductase (FRE) was first identified in Arabidopsis [14].
More recently the subcellular localization of FRO family proteins were identified, where the authors
reported that FRO2, FRO3 and FRO5 are expressed in roots having a role in iron uptake from the
soil [27], and FRO6, FRO7, and FRO8 are positioned in shoots, while FRO1 and FRO4 gene expression
occurs in both roots and leaves, but expression is comparatively low [22,28–31]. In rice only two
‘FRO-like’ genes (OsFRO1 and OsFRO7) were identified, having unique functional characteristics in
Fe uptake and abiotic stresses [16,32]. The expression of OsFRO1 was noticed in Zn2−-, Mn2−- and
Cu2−-deficient rice leaves and later their role in iron homeostasis and bulky biomass under Fe toxic
condition was confirmed by [33], The rice OsFRO1 mutant showed more Fe content in grain when
grown in iron-toxic soil [33]. Likewise, the knockdown of LeFRO1 transgene showed its effect on Fe
partition in Nicotiana benthamiana [26]. The iron deficiency responses necessitate the ethylene signaling
pathway, transcription factor, and up-regulation of several genes in Arabidopsis [34,35]. Moreover, the
auxin-mediated interaction between the ethylene insensitive 3 (EIN3) and FIT protein involved in the
shoot to root signal transduction, auxin induces proton extrusion and ferric reductase activity [35,36].
Heavy metals, particularly Fe, can catalyze the Haber-Weiss reaction, which promotes the production
of active hydroxyl radicals that damage macromolecules [37,38].

To sum up all these findings, we suggest that FROs may have a diverse role, not only in iron
distribution within plants and Fe uptake, but in addition they have different expression profiles under
abiotic stresses, metals toxicity and hormone application. However, up to now, there has been no
comprehensive study which can describe the role of rice FRO genes separately, and their regulatory
mechanisms in plant growth, abiotic and metals stresses. The aim of this study is to investigate
the expression pattern of the OsFRO1 and OsFRO7 rice gene under abiotic stresses, metals toxicity
and hormone applications. Additionally, a comprehensive approach to systematic evolution, gene
structure, protein organization and functional divergence was conducted to expand the understanding
and evolutionary relationship of the FRO gene family and their possible mechanism. Our study will
demonstrate and enlarge the knowledge about FRO genes for further functional inquiries and analysis.

2. Results

2.1. Identification, Classification, and Annotation of FRO Family Members

To identify and characterize FRO genes family members in plants, the sequences were searched
against the Hidden Markov Model (HMM) algorithm [39] and a total of 50 FRO genes in Plantae and
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15 FRO genes in non-Plantae were retrieved. The FRO homologues genes expansively distributed
among the species like in the yeast Saccharomyces cerevisiae, animalia, Homo sapiens, plants, (Eudicots),
Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Bryophytes, Physcomitrella patens, monocots, Oryza
Sativa, Zea mays, Brachypodium distachyon, Rhodophytes, Galdieria sulphuraria, Chlorophytes, Volvox
carteri, Coccomyxa subeuipsoidea c-169, Chlorella variabius nc64A, Chlamydomonas reinhardtii, Gymnosperms,
Picea abies, and Lycophytes, Selaginella moellendorffii, (Figure 1A,B, Supplementary Information Table S1
presents database information of these particular species). The genes with alternative transcript variants
of the same gene and the repeated sequence were removed. The homologous gene from different
subgenomes was clustered in the same group or grouped with close similarity to gene structure, protein
size or functional activity (Figure 1B). The putative functional domains of each FRO sequence was
identified by using Pfam and SMART databases and structural integrity of these domains was drawn
by Web Logo and EXPASY-PROSITE. All the putative FROs contain a transmembrane region with
Ferric_reduc domain (Pfam accession number PF01794), and two cytosol regions, FAD_binding_8
domain (PF08022) and NAD_binding_6 domain (PF08030) (Supplementary Information Figures S1 and
S2). Furthermore, the protein sequences of putative FROs (with value > 40 considered as unstable) were
evaluated with EXPASY PROTOPARAM (http://www.expasy.org/tools/protparam.html) online tool
for physiochemical characteristics and amino acid sequence (Supplementary Information Table S2).
The deduced length of the FRO proteins and molecular weights vary widely, ranging from lowest (60.33)
(SmFRO2) to highest (177.235) (HsDUOX1) amino acid residues. The FRO proteins are alkaline nature
according to isoelectric point (pI), which were near to nine pI and the instability indexes of FRO proteins
are mostly less than 50, which means that they all corresponded to stable proteins. Therefore, the
distribution of pI of proteins has a relationship with protein length, subcellular localization, taxonomy
and ecology of organisms. The majority of the proteins are all hydrophobic, as reflected by a grand
average of hydropathicity (GRAVY) values. The aliphatic indexes of the FRO proteins are ranged from
82.88 to 113.37, regarding as a positive factor for the increase of thermostability of globular proteins.
The major amino acid of the FRO proteins is Ser, followed by Leu, while other most abundant amino
acids are Pro, Ala, Asn, or Thr, varied depending on the particular FRO protein (Supplementary
Information Table S2).
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Figure 1. The FRO gene families. (A) Systematic evolutionary relationships of 16 different species
among eight lineages within the subgroup. (B) List of FRO genes per specie within group. (C) The
unrooted maximum-likelihood phylogenetic tree of FRO family members was inferred from the amino
acid sequence alignment of FRO proteins. The seven conserved clades are marked by different colors
and represented as Clade-I, Clade-II, Clade-III, Clade-IV, Clade-V, Clade-VI and Clade-VII. Scale bar
represents 0.2 amino acid substitution per site.
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2.2. Systematic Evolutionary Relationship, Gene Structural Diversity, and Motif Analysis

To discover the evolutionary phylogenetic relationships and functional divergence among FRO
genes, FRO homologs from rice and other species were selected for the multiple sequence alignments
and phylogenetic relationships analysis (Figure 1C, Supplementary Information Table S1). For an
evolutionary relationship, initially, we build an unrooted maximum-likelihood phylogenetic tree
using MEGA 6.06 Software. The sequences of the family-specific conserved domains of FRO proteins,
namely Ferric_Reduct (PF01794), FAD_binding_8 (PF08022) and NAD_binding_6 (PF08030), were
clustered into seven well-conserved clade-1-VII based on the difference of protein topological structure
with high bootstrap support (Figure 1C). The tree displayed the deep duplication nodes among
the FRO paralogues and the topology association within clades was highly consistent in plant
species. The FRE genes (1–8) were clustered into clade-1 due to exon/intron structure, protein length,
domain organization, and close functional homology. Correspondingly, clade-II genes have an extra
NADPH_Ox domain which is responsible for abiotic stresses in plants and in the animal for pathogen
attack. Whereas other plant FRO genes were clustered into clade-V and VII. Thus, concluding that
all the FRO homologs within distinct clades are due to exon/intron structure, protein length, domain
organization and an identical percentage of amino acids sequences.

The structural diversity of the genes and a conceivable mechanism of evolution were considered
to analyze exon/intron distribution. The exon/intron organization pattern was obtained from the
alignment of coding region sequences with respective genomic full-length sequences by using online
GSDS (http://gsds.cbi.pku.edu.cn/) tool. The structural distribution of exon/intron of FRO genes
can be split into seven well-conserved groups, which are represented as GI-GVII (Supplementary
Information Figure S3). The length and number of introns in plant FRO genes are conserved but
having difference among the subgroups, where intron arrangement, position, and phases is slightly
less conserved in orthologous genes. Interestingly, the plant FROs have less number of exon/introns
and are distributed among the subgroups (Supplementary Information Figure S3), while the non-plant
type FREs (fungi) have only exons. Although ‘NOX like’ genes have more complicated structures
because of saturated number of exons and introns, according to the phylogenetic tree (Figure 1C),
all the “non” type of homologous genes were clustered in one group and plant FROs were found
scattered in different groups due to the relationship of protein, size length, exon/intron distribution
and functional activity.

The conserved motifs of FRO proteins were searched through the online MEME server
(Version 4.10.0, http://meme-suite.org/tools/meme) with default parameters and total twenty distinct
motifs were identified and numbered from 1 to 20. The details of the putative motifs are shown in
Supplementary Information Figure S4, Table S3. The conserved domains of the FRO proteins were
confirmed by Pfam, SMART, Inter Pro Scan, Conserved Domain Database (CDD), NCBI (http://www.
ncbi.nlm.nih.gov/cdd/), and Scan Prosite databases. The family-specific domains, Ferric_Reduct
(PF01794), FAD_binding_8 (PF08022) and NAD_binding_6 (PF08030), were multiple aligned through
DNAMAN software and the logos were drawn via Web Logo (http://weblogo.berkeley.edu/logo.cgi)
online tool (Figure 2). The two conserved motifs, HPFT in FAD-binding domain and GPYG in NAD
binding domain were quite conserved in the OsFRO1 and OsFRO7 genes, which are associated with
co-factor binding, however, the other amino acid sequences was imperfectly conserved in both genes
(Figure 2).

http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/tools/meme
http://www.ncbi.nlm.nih.gov/cdd/
http://www.ncbi.nlm.nih.gov/cdd/
http://weblogo.berkeley.edu/logo.cgi
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Figure 2. Amino acid sequences alignment analysis of Ferric_reduct, FAD_binding_8 and
NAD_binding_6 domains of FRO proteins and the consensuses are shown in small letters. The two
motifs HPFT in FAD binding domain and GPYG in NAD binding domain are well conserved in
OsFRO1 and OsFRO7 protein sequences.

2.3. Chromosomal Location and Gene Duplication of FRO Genes

The chromosome location and annotation information of the FRO genes in the genome showed
that FRO genes are randomly distributed among the species (Figure 3, Supplementary Information
Table S4), Arabidopsis thaliana contains eight FRO genes, among which AtFRO1, AtFRO2, and AtFRO3
(37.5%) are located on chromosome 1 and AtFRO4, AtFRO5, AtFRO6, AtFRO7 and AtFRO8 (62.5%)
are located on chromosome 5. Brachypodium distachyon possesses only two FRO genes (BdFRO1 and
BdFRO2) which are located on chromosome 5. Similarly, Oryza sativa also has two FRO genes (OsFRO1
and OsFRO7) located on chromosome 4, and Zea mays genes (ZmFRO1 and ZmFRO2) are located on
chromosomes 1 and 2, respectively. Vitis vinifera holds six FRO genes of which VvFRO1 is located on
chromosome 12, VvFRO2 and VvFRO3 on chromosome 15, VvFRO5 and VvFRO4 on chromosome 16
and VvFRO6 on chromosome 17. Chlamydomonas reinhardtii has three FRO genes in which CrFRO1
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and CrFRO2 on chromosome 3 and CrFRO3 on chromosome 4. Physcomitrella patens has 5 FRO genes,
PpFRO1 on chromosome 6, PpFRO5 on chromosome 5, PpFRO2 on chromosome 11, PpFRO4 on
chromosome 16 and PpFRO3 on chromosome 27. Populus trichocarpa has eight FRO genes which
are distributed as PtFRO1 on chromosome 1, PtFRO2 and PtFRO3 on chromosome 4, PtFRO5 on
chromosome 12, PtFRO4 on chromosome 14, PtFRO6 on chromosome on 15, and PtFRO7 and PtFRO8
are on chromosome 17. Selaginella moellendorffii has nine FRO genes which are distributed as SmFRO1
on Scaf_0, SmFRO4 on Scaf_7, SmFRO9 on Scaf_9, SmFRO3 on Scaf_45, SmFRO6 on Scaf_59, SmFRO8
on Scaf_101, SmFRO5 and SmFRO7 on Scaf_10, and SmFRO2 on Scaf_39. Homo sapiens has seven genes
and Saccharomyces cerevisiae have eight genes which are FROs homologs located on four and four
different chromosomes, respectively. Volvox carteri, Chlorella variabilis NC64, Coccomyxa subellipsoidea,
and Picea abies contain only one FRO gene, which is located as VcFRO1-Scaf_1, CvFRO1- Scaf_6,
CsFRO1-Scaf_3, PaFRO1-Ma-76199, respectively. Furthermore, FRO paralogues were searched by
using Plant Genome Duplication Database (PGDD, http://chibba.agtec.uga.edu/duplication/) [40]
discovering three paralogues gene pairs of Populus trichocarpa and no paralogues in other species were
found, suggesting that FRO family genes have undergone strong selection pressure for functional
expansion (Supplementary Information Figure S5). Moreover, to explore the connotation of positive
selection, approximate date of the duplication and time of divergence, the rate of nonsynonymous
substitution (Ka), synonymous substitution (Ks), and the Ka/Ks ratios were calculated for the three
paralogues gene pairs using the mean Ks values from T = Ks/2λ, in which the mean synonymous
substitution rate (λ) for Populus trichocarpa is 9.1 × 10−9.
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Figure 3. Chromosomal localization of FRO genes Families (A), Arabidopsis thaliana; (B), Brachypodium
distachyon; (C), Oryza sativa; (D), Zea mays; (E), Physcomitrella patens; (F), Chlamydomonas reinhardtii;
(G), Vitis vinifera; (H), Physcomitrella patens; (I), Chlorella variabilis NC64; (J), Coccomyxa subellipsoidea
C-169; (K), Populus trichocarpa; (L), Volvox carteri; (M), Selaginella moellendorffii; (N), Homo sapiens; (O),
Saccharomyces cerevisiae; respectively. The graphical view was drawn from each gene ID and scaffolds
information and position of each gene are indicated by line, whereas scale bar represents the total
length of chromosome.

http://chibba.agtec.uga.edu/ duplication/
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2.4. Developmental and Tissue-Specific Expression Profile of Rice OsFRO1 and OsFRO7 Genes

To examine the involvement of OsFRO1 and OsFRO7 genes in growth and development of
rice, we examined the different developmental stages/tissues, a set of microarray data obtained
from Genevestigator v3. The same gene expression data were also obtained from rice eFP browsers
(http://bar.utoronto.ca/welcome.htm) database [41]. The expression data from the microarray analysis
of rice OsFRO1 and OsFRO7 are presented as a heatmap from green to red (from low to high) reflecting
the percentage expression (Figure 4A). The qRT-PCR and semi-quantitative RT-PCR analysis of OsFRO1
and OsFRO7 genes showed ubiquitous expression pattern (Figure 4B,C). The expression of OsFRO1
gene was upregulated in leaf blade, leaf sheath, seedlings and especially in flag leaf at heading
stage whereas the low mRNA accumulates were observed in other stages/tissues (Figure 4B,C).
The expression of OsFRO7 gene was highly upregulated in leaf blade, leaf sheath, and flag leaf,
whereas the expression in other plant parts such as nodes, internodes and inflorescences stages were
quite low. Thus, both genes have shown expression in various organs and play a vital role in plant
growth and development.
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Figure 4. Developmental expression profile of OsFRO1 & OsFRO7 rice genes. (A) The expression
profiles obtained from the database of Rice as reported by Genevestigator v3, demonstrating different
expression levels of OsFRO1 & OsFRO7 genes in different tissues. Results were given as heat maps from
green to red reflecting relative signal values; where dark green boxes represent stronger down-regulated
expression and dark red boxes represents stronger up-regulation; (B) The graphs indicate tissue specific
expression level in rice plant. The samples were collected in different developmental stages and were
analyzed through qRT-PCR. Data are means represents from three independent qRT-PCR amplifications;
(C) The tissue specific banding pattern of OsFRO1 & OsFRO7 rice genes through Semi-quantitative
RT-qPCR analysis, OsActineI was used as standard control to normalized the data.

2.5. Inducible Expression Analysis of Rice OsFRO1 and OsFRO7 Gene under Abiotic and
Hormones Applications

To evaluate the molecular mechanism and transcriptional regulation of OsFRO1 and OsFRO7
against different abiotic stresses and hormonal treatment, initially, we searched the cis-elements in
the promoter region of OsFROs using Plant CARE online program and responsive elements (ABRE,
P-box, Sp1, GC-motif) were found, which is mainly involved in hormonal interaction and light
stress (Supplementary Information Table S5). Furthermore, we analyzed the microarray data of rice
via Genevestigator v3 (Figure 5A,B), which made us to analyze the expression level of these genes
using qRT-PCR under environmental stresses. Therefore, we investigated the inducible expression
characteristics of two candidate genes, OsFRO1 and OsFRO7, rice seedlings subjected to different
environmental stresses, and the different expression levels were observed at various time points

http://bar.utoronto.ca/welcome.htm
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(Figure 5). The FRO genes in rice exhibit response to numerous environmental stresses such as salt,
heat, cold, drought and hormonal treatments like, ABA, MeJA, and SA. According to the qRT-PCR
analysis, it was found that with the passage of time after NaCl2 (200 mM NaCl) stress, the transcript
levels of OsFRO1 were evaluated and reached up to maximum level after 24 h (Figure 5C), whereas
in contrast the expression level of OsFRO7 gene were reached to the maximum level after 3 h post
treatment and then concomitant down-regulation occurred at 6 h and 12 h (Figure 5D). Similarly, the
selected candidate genes were also exposed for dehydration stress by providing 20% PEG-6000 in
Hoagland’s solution (Figure 5C,D). The results revealed that both OsFRO1 and OsFRO7 genes showed
obvious changes and significant boost were noticed after 6 h treatment, further, down-regulation was
observed when the plants were exposed for a long period to dehydration state (Figure 5C,D).
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Figure 5. (A) Inducible expression profile of OsFRO1 and OsFRO7 in response to abiotic stresses, as
reported by Genevestigator v3, demonstrating different expression levels of OsFRO1 and OsFRO7 genes
in different tissues. Results were given as heat maps from green to red reflecting relative signal values;
where dark green boxes represent stronger down-regulated expression and dark red boxes represents
stronger up-regulation; (B) Log 2-ratio and fold changes in the expression of OsFRO1 and OsFRO7
genes under abiotic stresses; (C) Inducible expression profile of OsFRO1 in response to treatment with
NaCl, Heat, Cold and PEG (6000); (D) Inducible expression profile of OsFRO7 in response to treatment
with NaCl, Heat, Cold and PEG (6000); (E) Inducible expression profile of OsFRO1 in response to
hormones treatment ABA, MeJa and SA; (F) Inducible expression profile of OsFRO7 in response to
hormones treatments ABA, MeJa and SA. Mean values represents from two independent qRT-PCR
amplifications; (G) Reverse transcriptase analysis and banding pattern of OsFRO1 and OsFRO7 genes
in response to treatment with NaCl, Heat, Cold and PEG (6000); (H) RT-PCR analysis and banding
pattern of OsFRO1 and of OsFRO7 genes under different hormones treatments. Where OsActineI was
used as standard control to normalized the data.

When chilling (4 ◦C) stress was applied, the results showed that both (OsFRO1 and OsFRO7)
genes showed a progressive increment in the expression levels and reached to the maximum level after
12 h, later exposure to cold showed a decline in expression level (Figure 5C,D). Further, the results
obtained from heat stress revealed increase expression level of OsFRO1 gene after 3 h and 6 h and then
decreased were followed by 12 h and 24 h, whereas OsFRO7 had shown no expression under heat
stress (Figure 5C,D). The candidate FRO genes were also tested against hormonal stresses (ABA, MeJA
and SA treatments) (Figure 5E,F). The results unveiled that in response to signaling molecules, OsFRO1
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and OsFRO7 underwent clear changes in expression. After, the treatment with MeJA (100 µM), the
simultaneous up-regulation at 6, 12 and 24 h in OsFRO1 was noticed, whereas the OsFRO7 gene was
only up regulated at 6 h (Figure 5E,F). An increase in expression level after 6, 12 h post ABA (100 µM)
treatments were noticed in the OsFRO1 and OsFRO7 genes, respectively (Figure 5E,F). Likewise, in
response to SA (500 µM) significant mRNA accumulations were noticed at 6 h in both genes (OsFRO1
and OsFRO7) after treatment (Figure 5E,F). Furthermore, the RT-PCR analysis also supported our
results which can be seen in banding pattern when OsActin1 is used as reference gene (Figure 5G,H).
Here, only rice FRO genes were examined and the results obtained here suggested that each FRO
has its unique inducible expression pattern against different environmental fluctuations and thus
regulating its particular functional behavior in the plant stress responses.

2.6. Inducible Expression Analysis of Rice OsFRO1 and OsFRO7 Genes against Different Heavy
Metals Stresses

To further insight the transcriptional regulation and expression pattern of OsFRO1 and OsFRO7
genes and the possible involvement of heavy metal stresses, two weeks old rice plants were exposed
to eight different metals stressors such as Fe, Cd, Ni, Mn, Zn, Pb, Co and Cr (Figure 6).
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Figure 6. Inducible expression patterns of rice FRO family genes under different heavy metals stresses.
The 18 days old rice seedlings were exposed to FeSo4·7H2O (7 mM), CdCl2 (0.5 mM), PbNo3 (1 mM),
K2Cr2O7 (1 mM), NiCl2 (1 mM), MnSo4 (2 mM), CoCl2 (1 mM) and Zn(No3)2 (5 mM) treatments for
24 h. (A,B) represents the expression profile of OsFRO1 and (C,D) represents the expression pattern of
OsFRO7. The samples were taken at (0 h, 3 h, 6 h,12 h and 24 h) duration, RNA was extracted and analysis
were performed through qRT-PCR and Semi RT-qPCR. Mean values represents from two independent
qRT-PCR amplifications, where OsActineI was used as standard control to normalize the data.
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The temporal induction of OsFRO1 and OsFRO7 genes at the transcriptional level at a various
time point were assessed by real-time qRT-PCR and semi-quantitative RT-PCR analysis. Our results
demonstrated that a rapid and marked increase in both genes expression occurred, which peaked
after 24 h stress duration (Figure 6). Transcript induction of OsFRO1 and OsFRO7 genes were reached
to maximum level due to Zn, Pb, Co and Ni after 6 and 12 h, respectively (Figure 6A,C), and after
later expose to these stresses irregular or abrupt changes were seen in the expression of these genes
(Figure 6A,C). The subjection of Cd stress downregulated the expression of both genes (Figure 6A,C).
On the contrary, the expression of both genes was triggered after 12 and 24 h treatment due to
induction of Fe while in early time points no such changes were seen (Figure 6A,C). Meanwhile, when
we checked the expression pattern under Mn treatment, we noticed divergent results, the OsFRO1 gene
was downregulated (Figure 6A,B), while the OsFRO7 gene was upregulated after 3 h (Figure 6C,D).
Likewise, in the case of Cr, the expression of OsFRO1 gene was immediately down-regulated after
3 h treatment (Figure 6A), whereas, the OsFRO7 gene was upregulated by 6 and 12 h treatments
(Figure 6C). Moreover, the physical appearance of young seedlings and micronutrients was also
changed after heavy metal treatment. Additionally, the RT-PCR analysis also supports our results
which can be seen in the banding patterns using OsActin1 as reference gene (Figure 6B,D). Together all
these outcomes indicate that both genes have complicated regulatory mechanisms under heavy metals
stress and had a distinct expression pattern which provides a beneficial fundamental background and
functional specificity in response to these metals stresses.

2.7. Determination of Antioxidant Enzyme Activities

Reactive oxygen species (ROS) are the major constituents of defense and may change the redox
state of cells [42]. Plants utilize a complex antioxidant system for scavenging ROS and protect cells
from oxidative damage. The antioxidant activities of plants against stress mainly depend on the plant
species and metal involved. The antioxidant enzymatic activity of SOD, POD, CAT and MDA is
changed under heavy metal stress in plants [43,44].

Our results indicated the significant activity of SOD, POD, CAT and MDA in leaves of rice when
subjected to iron (Fe) and chromium (Cr) stress (Figure 7). The SOD, POD, CAT and MDA activity
were greatly increased under Fe stress while the antioxidant activity of plants under Cr stress was
decreased compared with control plants (Figure 7A). Further, the morphological characteristics (plant
height and root length) of the plants were recorded under metal stress using a scale (Figure 7B), where
the shoot length and root growth under Fe and Cr stress were significantly inhibited with respect to
control plants (Figure 7B). The leaves of rice plants under Fe stress become brown and suffered cell
necrosis, while under Cr stress the leaves were less brown although the growth was considerably
retarded compared to control plants (Figure 7C).
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Figure 7. The enzymatic activity and morphological changes in rice shoots under Fe and Cr stresses.
(A) Shows the changes in SOD, POD, CAT and MDA under Fe and Cr toxic level; (B) The mean of shoot
length and roots length under stress conditions. The graph represents the mean of three replicates;
(C) The physical appearance in terms of shoot (cm) and root (cm) of young seedlings and changes after
heavy metal stresses after one week.

3. Discussion

3.1. FRO Genes Expansion, Duplication, and Structural Diversity

The evolutionary relationship and gene clustering mostly fluctuate due to domain shuffling
and low sequence identity between two homologous proteins. Thus, the rearrangement of domain
composition, exon shuffling and gene duplication may lead to the expansion of gene families in plants
during evolutionary processes [18,45]. Afterward, the duplicated genes may enhance the functional
divergence, and possibly improve the functional characteristics of genes [46,47]. Moreover, single gene
duplication might be a prime cause leading to the expansion of gene families in plants [25].

In this investigation, we built a phylogenetic tree based on conserved domain analysis and
the proposed evolutionary relationship of the FRO gene family among different living organisms
(Figure 1C). The analysis revealed that the gene architecture and domain organization of FROs
are highly conserved within gene families, whereas the entire FRO genes were divided into seven
conserved clades mentioned as clade-1 to clade-7 (Figure 1C). The ancient FROs proteins which were
named as FREs were identified in fungi [18], these FREs perform dual functions: ROS-generation and
metal ion-reduction [19]. In our study, these FRO homologs were clustered in clade-1. In a previous
study on these FRE proteins they were also classified in well-conserved clades [25]. FRE protein has
only exons so it may be assumed that the members of the same clade shared a similar gene structure
and functional similarity in an evolutionary relationship. It has been reported that FRO proteins are
the ancestral forms of NOXs mainly occur in animals, algae, rhodophytes and chlorophytes possessing
an extra NADPH_Ox peroxidase domain functioning in the maintenance of ROS activity, both in
normal and stressful conditions [25]. Therefore, the members of clade-2 display diverse exon/intron
structures exhibiting even more complicated structures than plant FROs (Supplementary Information
Figure S3). Furthermore, it is also suggested that plant FROs are closer in genetics to the ‘NOX like’
gene, so it is reasonable based on these findings that the gene duplication and fusion may be involved
in the process of gene expansion. The clades-4 to 7 genes are mostly found in land plants and algae
which contain the three conserved domains—Ferric_reduct, FAD_binding_8 and NAD_binding_6,
but lack the NADPH_Ox domain. Therefore, separating the function of these FRO genes may affect
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plant physiology, growth, and development. For example, the OsFRO1 and AtFRO7 genes were
clustered in the same clade while the function of AtFRO7 is to direct the import of Fe to chloroplast [48].
Additionally, in rice two FRO genes which are mainly responsible for iron uptake and iron homeostasis
in higher plants were located on chr.1 and 5, respectively (Figure 3) [48,49]. Therefore, it is logical
that the rice FROs might have biological behavior and probably functional similarities with other
clade members. The results obtained here are supported by [50], where the authors found that the
same gene structure, motif and domain composition and functional similarity in MRLK family genes,
which are involved in strawberry (Fragaria vesca) fruit ripening and abiotic stress responses, so it can
be concluded that the reason for different phylogenetic clustering of FRO genes in clades-4–7 might be
due to high similarities in gene structure, protein length, domain position, motif compositions and
high conservation to functional activity.

The structural diversity of genes and loss or gain of an intron within multiple gene families also
contribute to the evolutionary mechanism and variability [51,52]. Besides evolution, gene and domain
organization also play a vital role in response to stress conditions. After examining the exon/intron
structures of FRO (Supplementary Information Figure S3), we have found that the numbers of introns
and intron phases are considerably conserved in plant FROs, where the position of introns are distinct
among the subgroups. Therefore, the functional diversity and divergence of the FRO family proteins
in plants may be due to long-term evolution history. These results are similar to those of other research
studies, that were carried over the evolution mechanism of NOX gene families [25]. As the evolution
of plants genome could be tandem, segmental or arise from the whole genome, we therefore analyzed
FRO genes for gene duplication (Supplementary Information Figure S5). In our study we found
three pairs of gene duplication in Populus trichocarpa, suggesting that the expansion of FRO genes
occurred through segmental duplication and was passed on under a strong negative selection process
during evolution.

3.2. Evolution and Functional Diversity of Conserved Domains in Plant FRO Genes

Domain architectures evolve in different modes, and thus the frequent fusion during
evolution process may complicate domain composition and structural diversity in prokaryotes and
eukaryotes [53]. The FRO family associates and their homologs originated from a common ancestor
sharing three canonical domains, a heme-containing transmembrane region ferric reductase domain
(Pfam: PF01794), and the two C-terminal cytoplasmic FAD-binding (PF08022) and NAD-binding
(PF08030) domains [14,35,54], found in all living organisms from prokaryotic bacteria to eukaryotic
angiosperms [25]. Ferric-reductase has the ability to transfer electrons from extracellular ferric ions to
generate the reduced form of ferrous ions, which can then be transported across the plasma membrane
by specific iron transporters [55,56]. The core conserved ferric-reduct domain exists in many genomes
and found in multiple genes [57]. The two C-terminal domains (NADPH-binding and FAD-binding
domain) expand the functional unit, in which the NADPH-binding domain provides the enzyme with
a readily available electron donor, thereby raising its proficiency. Meanwhile, the FAD-binding region
optimizes the energetic profile of the electron transport chain. This module with redox and electron
transfer properties is beneficial to many redox systems [53]. The emergence of the ferric-reduct domain
probably transfers from prokaryotes to eukaryotes in early evolution by different modules that either
participate in redox systems or are regulatory components [58–60]. Then it is possible that the core
results after independent fusion events in eukaryotes enlarge the structural complexity and function
of FRO genes by adding FAD_binding_8 (PF08022) and NAD_binding_6 (PF08030) domains from
rhodophytes and green algae, and then furthermore, gene duplication and gene fusion increase the
number of FRO genes [53].

The specific position of conserved domains of each FRO gene was also identified in this
investigation, whereas all the FROs have three highly conserved in domains construction, except
the position and the distribution of amino acid residues in every domain is dissimilar in some
FROs (Supplementary Information Figure S6). Three H, F and G conservative amino acid residues
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presented with H××××H in Ferric_redut, H××F in FAD and G×G NAD_binding domain indicated
as small letters in Supplementary Section Figure S5. However, other conserved features including the
FAD-binding motif (HPFT) and NAD-binding motif (GPYG) are the signature sequence in OsFRO1
and OsFRO7 genes and thus, are associated with co-factor binding, although the other amino acid
sequence was imperfectly conserved in both genes (Figure 2).

3.3. Tissue-Specific Gene Expression of Rice OsFRO1 and OsFRO7 and Specific Role in Response to
Metals Stress

The particular protein family members in plants have common genes expression profile
characteristics. This may coordinate and/or differ in functional interaction of the family members.
The previous study had shown that FRO genes in rice have clear function [16,26,61–63]. In Arabidopsis,
FROs homologous genes which contribute to different biological processes and/or stress responses
with obvious tissue specificity in gene expression have been functionally characterized [13,27,28].
All the FROs are expressed in different photosynthetic tissues and perform various functions like, FRO2
reducing the Fe3+ to Fe2+ subsequently transported across the plasma membrane of root epidermal
cells, FRO4 and FRO5 function redundantly to reduce copper to facilitate its uptake from the soil,
FRO7 is responsible for iron delivery to chloroplast and FRO3 and FRO8 are assumed to influence
mitochondrial metal ion homeostasis [29,31]. The homologs of FROs in fungi show dual functions of
both ROS-generating and metal ion-reducing [19]. While algae FROs found only functioning in ROS
production and have shown no involvement in iron homeostasis [64,65]. The LeFRO1 is expressed
in roots and shoots [24], while the expression pea FRO1 is noticed in roots (plus nodules) and leaves
under iron stress [23].

The functional prediction and database searching also suggested that OsFRO1 involvement
in iron homeostasis [33] and the expression have been reported in leaves of Zn2−, Mn2−- and
Cu2−-deficient plants [48]. The expression of OsFRO1 gene was significantly correlated with Fe and/or
Zn concentrations in seeds [66]. The regulation of rice genes related to Fe excess and deficient stress
have been studied by various researchers [9,67], Hence, FRO genes are expressed in different tissues
depending on the location within cell compartments and are responsible for iron homeostasis, iron
uptake and iron translocation from root-to-shoot through xylem and the transport of Fe to subcellular
organelles in higher plants [26,48,49,61–63,68]. Additionally, rice FROs subcellular localization is
also yet not clear, and only the cellular function as membrane-bound protein in mitochondria was
mentioned by [69], which means that rice iron uptake may differ from non-grass species [1,70].
Moreover, the low expression level of OsFRO1 under Cr stress reduces the Cr uptake as well as uptake
of iron and Fe reductase [71]. Therefore, it can be concluded that OsFRO1 and OsFRO7 genes play
a role in heavy metal homeostasis, gene regulation, expression and plant physiology. Both genes
are highly expressed in flag leaves, which are considered the key source of phloem-delivered photo-
assimilated remobilized metals and have a role in the grain filling stage. We also hypothesize that
OsFRO genes may be sensitive to some of the heavy metals, and thus it could be assumed the reduction
of metals uptake and iron reductase activity, but further study is needed. The distinct expression
patterns may provide a beneficial fundamental background which may open new avenues for the
study of metal detoxification and individual role of each rice FRO against heavy metal stresses.

3.4. Inducible Expression Pattern of OsFRO1 and OsFRO7 Gene against Environmental Stresses and
Hormones Treatments

Numerous adverse environmental factors such as ion toxicity, salinity, drought, extreme
temperatures negatively affect plant growth and development [72–77]. Several of these abiotic
stresses cause general or specific effects on growth and plant development and changes at the
transcriptional level [16,78–80]. Here, we found that rice FROs are sensitive to a set of abiotic stresses,
and their transcriptional variation was greatly influenced by salt, cold, drought, MeJA and ABA
stress treatments (Figure 5C–H), indicating their participation in stress responses in rice. Arabidopsis
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FRO7 gene is functionally similar to rice FRO1 (Figure 1C), which is directs the import of Fe to
chloroplasts [48]. Similarly, AtFRO1, a homologous of rice FROs, were also found to be induced by
1-naphthoxy-aceticacid (1-NOA) and was decreased by 1-naphthaleneacetic acid (NAA) treatment
under Fe- deficient conditions [81]. Nevertheless, rice FROs are very involved in iron translocation
and homeostasis but to some extent, display structural similarity except for a lack of the NADPH_Ox
domain in FRO homologs ‘like NOXs’ [18], which suggests that perhaps FROs are involved in abiotic
and hormonal interactions. Some responsive elements of hormonal stresses are also found in the
promoter regions of rice FRO genes (Supplementary Information Table S5). In the present study,
OsFRO1 is downregulated by high temperature treatment, whereas OsFRO7 was upregulated (Figure 5).
Maximum expression of both genes (OsFRO1 and OsFRO7) was observed under salt, drought and
cold stress (Figure 5C,D). Likewise, for hormone treatments (ABA, MeJa, and SA) OsFRO1 gene was
significantly upregulated, whereas OsFRO7 was only upregulated by SA and was not affected by other
treatments (Figure 5E,F). These results suggested the unique expression profile of OsFRO1 and OsFRO7
have different functions and mechanisms in response to stress evaluation and might play crucial roles
in the plant defense system, although both genes are stress responsive and might be involved in stress
signaling through a possible cross-talks linkage among the FRO gene family members.

3.5. Changes in Antioxidant Activity under Iron (Fe) and Chromium (Cr) Stress

The antioxidant enzymatic activity protects plant from oxidative damage by scavenging free
radicals and peroxides through elevated activity under heavy metal stress [82]. In the present study
the antioxidant activity of enzymes like SOD, POD, CAT and MDA significantly increased under Fe
and Cr stresses. Therefore, it is suggested that leaf antioxidant activity enzymes (SOD, POD, CAT and
MDA) play a significant role to cope with Fe- and Cr-induced oxidative stress in rice. Quantitative
changes in antioxidant activity have also been reported in Cd2+ or heat, abiotic and other metal stress
in barley, maize and rice plants [83,84], although, the antioxidant activity in rice under Cr stress may
vary [85,86]. The morphology of the plants was also changed in response to Fe and Cr stresses as
evidenced by reduced shoot length, root growth, stunted growth and low tillering. Other researchers
also reported in rice that exposure to Fe and Cr stresses increase the accumulation of other metals that
change the morphology of plants [87–90]. Further, the responses to these stresses compartmentalize
with other stresses, so it does not overlap with one specific stress.

4. Materials and Methods

4.1. Sequences Assembly and Identification of FRO Genes Family Members

To comprehensively annotate the putative protein sequences and genomic information of FRO
gene families, firstly we retrieved 50 FRO genes in 16 different species from publicly available databases.
All of the retrieved protein sequences were the most recent non-redundant ones. To further authenticate
the reliability of candidate proteins, we also performed a BLASTp search against the corresponding
genomes by using full-length amino acid sequences, the method followed by [91]. Among those genes
with alternative splice variants, the longest was chosen for further analysis. Subsequently, all the
candidate protein sequences were further examined to confirm their completeness and presence of the
core domain via the following online tools: SMART (http://smart.embl-heidelberg.de/) [92], Inter
Pro Scan program (http://www.ebi.ac.uk/interpro/) Conserved Domain Database (CDD) (http://
www.ncbi.nlm.nih.gov/cdd/), and Scan Prosite (http://prosite.expasy.org/scanprosite/). To identify
the FRO genes homologs HMMER v3.0 (http://hmmer.janelia.org/) (E < 1 × 10−5), was used to
perform using the family-specific Ferric_reduct (PF01794), FAD_binding_8 (PF08022), NAD_binding_6
(PF08030) domains. The potential chemical characteristics of FRO proteins like, isoelectric point (PI),
molecular weight (kD), instability index, aliphatic index, grand average of hydropathy (GRAVY) and
major amino acids of each FRO were obtained using the ExPASy proteomics server (http://web.expasy.
org/protparam/) [93].

http://smart.embl-heidelberg.de/
http://www.ebi.ac.uk/interpro/
http://www.ncbi.nlm.nih.gov/cdd/
http://www.ncbi.nlm.nih.gov/cdd/
http://prosite.expasy.org/scanprosite/
http://hmmer.janelia.org/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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4.2. Phylogenetic Relationships, Exon and Intron Distribution and Conserved Motif Analysis

To further explore the evolutionary relationship of FRO gene families, the candidate FROs
proteins were initially multiply aligned by using the ClustalW v2.0 online tool (http://www.ebi.ac.uk/
Tools/webservices/services/msa/clustalw2_soap) and then the maximum likelyhood phylogenetic
tree was constructed by using the MEGA 6.06 software package with default parameters and the
reliability of interior branches was assessed with 1000 bootstrap repetitions. The exon/intron structure
analysis of FRO genes were obtained through the online Gene Structure Display Server (GSDS,
http://gsds.cbi.pku.edu.cn) software [94], by aligning coding sequences (CDS) to their corresponding
genomic DNA sequences [95]. The protein sequences of FRO genes in each family were analyzed
for motifs searching by using the MEME program (version 4.0) (http://meme.sdsc.edu/meme/cgi-
bin/meme.cgi) with default parameters change to 20 conserved motifs and optimum motif width set
to >6 and <200. For additional validation of FRO protein and sequence identities within alignment
online tool WebLogo (http://weblogo.berkeley.edu/logo.cgi) was used to identify the maximum
occurrence of amino acids. The logos of conserved domains annotation were performed using SMART
(http://smart.embl-heidelberg.de/) and Pfam (http://pfam.xfam.org/search). The three conserved
domain motifs, namely Ferric_reduct, FAD_binding_8 and NAD_binding_6 in each FRO sequence,
and domain diagrams were generated by PROSITE (http://prosite.expasy.org/mydomains/).

4.3. Determining Chromosomal Location and Gene Duplication

The distribution of FRO genes on chromosomes was explored by using chromosomal location
and annotation information from scaffolds and Gene translation ID form publicly available databases
and Map Draw software [96] was used to display precise gene locations according to the physical
positions. Gene duplication analysis was also conducted in FRO gene families by using the
Plant Genome Duplication Database (PGDD, http://chibba.agtec.uga.edu/duplication/index/locus).
Nonsynonymous (Ka) and synonymous (Ks) rates (Ka/Ks) were also calculated based on the results.

4.4. Cis-Regulatory Elements in the Promoter Region of FRO Genes

The 2 kb upstream region from the transcription start site of all FRO genes were obtained
from their corresponding databases and were searched for the cis-regulatory elements by using
the Plant CARE program (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) [97].
Further validation of the results was cross-checked by using the software PLACE (http://www.dna.
affrc.go.jp/PLACE/) [98] and Neural Network Promoter Prediction (http://promotor.biosino.org/)
(Supplementary Table S5).

4.5. Plant Material and Growth Conditions

Rice (Oryza sativa L cv. Nipponbare) seeds were obtained from the State Key Laboratory of Crops
Stress Biology for Arid Areas (Northwest A&F University, Yangling, China). The seeds were disinfected
with 0.5% (w/v) sodium hypochlorite (NaClO) for 4 h, rinsed thrice with distilled water and soaked
in water for 48 h in darkness. Afterwards, the seeds were germinated on moist cheesecloth at 28 ◦C
for 72 h and wetted with deionized water each day. Only healthy and uniform seedlings were
grown in hydroponic solution prepared in Milli-Q water [99], containing 16 mM, KNO3, 6 mM, Ca
(NO3)2·4H2O, 4 mM NH4H2PO4, 2 mM, MgSO4·7H2O, 50 µM, KCl, 25 µM, H3BO3, 25 µM, Fe-EDTA,
2 µM, MnSO4·4H2O, 2 µM, ZnSO4, 0.5 µM, Na2MoO4·2H2O and 0.5 µM, CuSO4·5H2O. The plants
were floated in nutrient solution fixed with foam plugged in vessels (one plant in single vessel).
The nutrient solutions were continuously aerated and the environment were strictly controlled in
growth chamber condition at (16 h/8 h day/night, temperature cycle of 30 ◦C/25 ◦C, 800 µmol m–2 s–1

light intensity and 60–65% relative humidity level). The hydroponic solution was changed after 24 h
duration and the pH were adjusted to 5.8 by using NaOH or HCl.

http://www.ebi.ac.uk/Tools/webservices/services/msa/clustalw2_soap
http://www.ebi.ac.uk/Tools/webservices/services/msa/clustalw2_soap
http://gsds.cbi.pku.edu.cn
http://meme.sdsc.edu/meme/cgi-bin/meme.cgi
http://meme.sdsc.edu/meme/cgi-bin/meme.cgi
http://weblogo.berkeley.edu/logo.cgi
http://smart.embl-heidelberg.de/
http://pfam.xfam.org/search
http://prosite.expasy.org/mydomains/
http://chibba.agtec.uga.edu/duplication/index/locus
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://www.dna.affrc.go.jp/PLACE/
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4.6. Stress Treatments and Sample Collection

To investigate the inducible expression profile of rice FRO genes the young fully expanded
seedlings (two weeks old) were subjected to various abiotic stresses, phytohormones and toxic metal
exposure. For dehydration 20% polyethylene glycol (PEG-6000), solution was purified by passing it
through an ion exchange column to remove any impurities and was filtered using Miracloth (22–25 µm,
(Thomas Scientific, Swedesboro, NJ, USA). Salt (200 mM NaCl) were prepared from stock solution by
dissolving in water. For cold (4 ◦C) was carried out in cold cabinet, and heat (40 ◦C) with a white cool
florescent light chamber. For hormones treatments: abscisic acid (ABA) (100 µM), methyl jasmonate
(MeJA) (100 µM) and salicylic acid (SA) (500 µM) were dissolved in ethanol and stock solutions
were prepared further, adjusted to final concentrations by adding an aqueous solution containing
the wetting agent Tween 20 at 0.05% (v/v) and sprayed on two weeks old rice leaves. For metals
treatments, FeSO4 (7 mM), CdCl2 (0.5 mM), PbNO3 (1 mM), K2Cr2O7 (1 mM), NiCl2 (1 mM), MnSO4

(2 mM) and CoCl2 (1 mM) were prepared from stock solutions and applied into fresh nutrient solution
as mention in Section 4.5 and as [100] with exception of phosphorus (P) that prevent precipitation
of Pb, following [101]. All the chemicals used for treatments were purchased from Sigma-Aldrich
(Burlington, MA, USA). The whole leaf blades from all treatments were collected with four (0, 3,
6, 12 and 24 h) time points from two weeks old rice plants. For the analysis of the tissue-specific
expression profiles of rice FRO genes, rice plants were allowed to grow in normal condition and
different plant organs at developmental stages including seedling, tillering, booting and heading
stages, were collected. The samples were immediately frozen in liquid nitrogen after harvested and
stored at −80 ◦C until for further analysis. Total RNAs was extracted from 0.5 g from whole leaf
blade sample by using RNAiso TM Plus (Takara, Dalian, China) and quality of RNA was checked by
nanodrop. The final value was calculated and adjusted up to 2000 ng/µL. The cDNA was synthesized
by Super Mix (Trans Gen Biotech, Beijing, China) with DNA remover according to manufactured
protocol and the final volume of cDNA was obtained up to 300 ng/µL, which was further diluted with
TE (Tris EDTA) buffer up to 50 ng/µL and used for qRT-PCR analysis. For RT-qPCR analysis cDNA
was diluted upto 100 ng/µL. The gene-specific primers were designed by avoiding the conserved
region by using Premier 6.0 software (http://www.premierbiosoft.com/primerdesign/index.html)
and the rice OsActin1 (GeneBank accession number: KC140126) was used as the internal control for
analysis. The results were presented in graphs, banding pattern and/or also table lists.

4.7. Antioxidant Enzyme Activities under Metal Stresses

The enzymes CAT, POD, SOD and MDA were extracted from shoots of 2-week-old plants.
The details of the methods of seed germination and seedling maintenance in nutrient solution were
described in Section 4.5. Fe and Cr stresses were induced through addition of Fe (500 µM) and Cr
(100 µM), respectively, to treatment solutions for one week and antioxidant activity was determined.
More briefly, 0.5 g leaf tissue was homogenized in 5 mL phosphate buffer (100 mM), after centrifugation
for 10 min the supernatant was transferred in Eppendorf tubes. For CAT analysis, the reaction mixture
(2 mL) contained 100 mM potassium phosphate buffer (pH 7.0), 400 µL 6% H2O2 and 100 µL shoot
extract and the decrease in absorbance was quantified at 240 nm (extinction coefficient of (36 M−1 cm−1)
using a UV spectrophotometer at 30 s intervals up to 1 min [102]. The peroxidase POD activity
was quantified using the method [103]. The reaction mixture (2 mL) contained 100 mM potassium
phosphate buffer (pH 6.5), 1 mL 0.05 M pyrogallol solution, 400 µL 200 mM and 100 µL shoot extract.
The changes in absorbance were recorded at 430 nm (extinction coefficient 12 mM−1 cm−1) in a
spectrophotometer from 30 s up to 1.5 min and POD activity was calculated. For SOD activity was
performed according to the method of [104] using nitro blue tetrazolium (NBT), the mixture contained
comprised of 1.5 mL of 0.1 M phosphate buffer (PB, pH = 7.5), 0.3 mL of 1.3 M methionine, 0.3 mL of
750 µM NBT, 0.3 mL of 100 µM EDTA-Na2, 0.3 mL of riboflavin and 0.25 mL of distilled water. A total
volume of 3.0 mL of assay mixture was reached by adding 0.05 m of enzyme extract and color changes
in absorbance were recorded by spectrophotometer at A560 nm. For MDA analysis, the method of [105]

http://www.premierbiosoft.com/primerdesign/index.html
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was used. Leaf tissue (0.5 g) were homogenized in 5 mL of 5% trichloroacetic acid, then centrifuged at
4000× g for 10 min at 25 ◦C and 3 mL of 2-thiobarbituric acid in 20% trichloroacetic acid was added to
a 2 mL aliquot of the supernatant. The absorbance was recorded at 532 nm, further correction was
mad by subtracting non-specific turbidity at 600 nm absorbance and MDA concentration was recorded
by extinction coefficient MDA (ε = 155 µM−1 cm−1).

4.8. qRT-PCR Analysis

The real-time qPCR was performed with Platinum SYBR Green qPCR Super Mix-UDG with ROX
(Invitrogen, Carlsbad, CA, USA) on CFX96™ Real-Time PCR Detection System (BioRad, Foster City,
CA, USA). Each reaction was consisted of 5 µL SYBR premix ExTaq (Takara, Kyoto, Japan), 2 µL cDNA
samples, and 0.5 µL of each primer (10 µM) and 2 µL ddH2O in a reaction system of 10 µL. The thermal
cycle was as follows: 95 ◦C for 3 min, followed by 40 cycles at 94 ◦C for 15 s, 62 ◦C for 20 s, and 72 ◦C
for 20 s. Melting-curve analysis was performed directly after real-time PCR to verify the presence of
gene-specific PCR products. This analysis was done by 94 ◦C for 15 s, followed by a constant increase
from 60 to 95 ◦C at a 2% tamp rate. qRT-PCR analysis was repeated twice for further validation of
results. The OsActin1 gene was used as internal control and relative expressions were compared with
that of control plants and served as a standard gene for normalizing all mRNA expression levels.
The detailed list of primers was shown in Supplementary Table S6. The relative amount of template
present in each PCR amplification mixture was evaluated by using the 2−∆∆Ct method. The RT-qPCR
analysis was performed and run on gel electrophoresis with standard markers. All the primers were
designed from FRO genes sequences using Primer 6.0 (Supplementary Table S6). Each primer pair was
tested via standard RT-PCR to check the size specificity of the amplified product by 1% agarose gel
electrophoresis. The images were taken by gel doc system and the banding patterns were recorded.
The gel photos were adjusted using the image J software (NIH, Bethesda, MD, USA).

4.9. Statistical Analysis

Statistical analysis was performed by using variance (ANOVA) and the means were compared
by the T-test at the 5% level using the SPSS 11.5 software package (SPSS Inc., Chicago, IL, USA).
Experiments performed in this study had at least three independent replications for each sample.
Further, graphical presentation was prepared using GraphPad Prism 6 (GraphPad Software, Inc.,
La Jolla, CA, USA).

5. Conclusions

The results of our experiments suggesting that rice FRO genes play a significant role in many
metabolic processes and the intricate signaling networks in response to a number of abiotic stresses,
metals toxicities and hormonal applications. However, the particular molecular mechanism and
function of rice FROs are still ambiguous. Moreover, the interactions of FROs are also poorly described.
The diverse expression pattern of rice FRO genes has been noticed within tissues and changes in
environmental conditions, such as drought, heat, salt, metals, and phytohormones, signifying the
varied functions and unique expression pattern of these genes in the plant development and stress
responses. Thus, the dissimilar changes in expression level in the same rice FRO gene against various
environmental fluctuations infer a difference in their regulatory mechanism. The results obtained here
shed light and clarify the background for further experiments, defining the specific role of each FRO
gene in regulatory stress responses as well as in transgenic rice to unveil the function and the possible
cross-talk between rice FRO proteins in plants.

Supplementary Materials: The following are available online. Figure S1: 3D general representation of functional
domains, Table S1: Detail of plant genomes analyzed in this study, Table S2: The detail information about
physiochemical characteristics of FRO gene families, Table S3: Motif sequences identified by MEME tools, Table S4:
Genomic information of FRO genes, Table S5: The cis-elements regulatory elements in the promoter region of
OsFRO1 & OsFRO7 genes, Table S6: The detailed list of primers used for expression analysis.
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