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Abstract
Main conclusion  Deep learning is a promising technology to accurately select individuals with high phenotypic values 
based on genotypic data.

Abstract  Genomic selection (GS) is a promising breeding strategy by which the phenotypes of plant individuals are usually 
predicted based on genome-wide markers of genotypes. In this study, we present a deep learning method, named DeepGS, to 
predict phenotypes from genotypes. Using a deep convolutional neural network, DeepGS uses hidden variables that jointly 
represent features in genotypes when making predictions; it also employs convolution, sampling and dropout strategies to 
reduce the complexity of high-dimensional genotypic data. We used a large GS dataset to train DeepGS and compared its 
performance with other methods. The experimental results indicate that DeepGS can be used as a complement to the com-
monly used RR-BLUP in the prediction of phenotypes from genotypes. The complementarity between DeepGS and RR-BLUP 
can be utilized using an ensemble learning approach for more accurately selecting individuals with high phenotypic values, 
even for the absence of outlier individuals and subsets of genotypic markers. The source codes of DeepGS and the ensemble 
learning approach have been packaged into Docker images for facilitating their applications in different GS programs.

Keywords  Deep learning · Ensemble learning · Genomic selection · High phenotypic values · Machine learning · 
Genotypic marker

Abbreviations
CNN	� Deep convolutional neural network
DL	� Deep learning
GS	� Genomic selection
MNV	� Mean normalized discounted cumulative 

gain value
(RR)-BLUP	� (Ridge regression)-Best linear unbiased 

prediction

Introduction

Genomic selection (GS), originally proposed by Meuwissen 
et al. (2001) for animal breeding, is regarded as a promising 
breeding paradigm to better predict the plant or crop pheno-
types of polygenic traits using genome-wide markers (Desta 
and Ortiz 2014; Bhat et  al. 2016; Poland and Rutkoski 
2016). Unlike both phenotypic and traditional marker-based 
selection, GS has the inherent advantages of predicting phe-
notypic trait values of individuals before planting, of esti-
mating the breeding values of individuals before crosses are 
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made, and, notably, of reducing the time length of the breed-
ing cycle (Jannink et al. 2010; Jonas and de Koning 2013; 
Desta and Ortiz 2014; Yu et al. 2016). Recently, several GS 
projects have been launched for crop species, namely wheat, 
maize, rice and cassava (Spindel et al. 2015; Guzman et al. 
2016; Marulanda et al. 2016; Poland and Rutkoski 2016). 
However, the application of GS in the field of practical crop 
breeding is still nascent, largely because it must overcome 
the requirement of robust approaches for making accurate 
predictions in a high-dimensional marker data, where the 
number of genotypic markers (p) is much larger than the 
population size (n) (p > > n) (Jannink et al. 2010; Desta and 
Ortiz 2014; Schmidt et al. 2016; Crossa et al. 2017).

Up to date, various GS prediction models have been 
developed with traditional statistical algorithms, including 
BLUP (best linear unbiased prediction)-based algorithms, 
such as the ridge regression BLUP (RR-BLUP) (Endel-
man 2011) and the genomic relationship BLUP (GBLUP) 
(VanRaden 2008), and Bayesian-based algorithms, such as 
Bayes A, Bayes B, Bayes Cπ and Bayes LASSO (Meuwis-
sen et al. 2001; de los Campos et al. 2009). However, among 
the different GS prediction models, not much variation in 
prediction accuracy was frequently observed (Varshney 
2016; Roorkiwal et al. 2016). In addition, the GS predic-
tion models typically make strong assumptions and perform 
linear regression analysis. A representative example is the 
commonly used RR-BLUP model, which assumes that all 
the marker effects are normally distributed with a small but 
non-zero variance, and predicts phenotypes from a linear 
function of genotypic markers (Xu and Crouch 2008). Thus, 
these GS models face statistical challenges related to the 
high dimensionality of marker data, and have difficulty cap-
turing complex relationships within genotypes (e.g., mul-
ticollinearity among markers), and between genotypes and 
phenotypes (e.g., genotype-by-environment-by-trait interac-
tion) (van Eeuwijk et al. 2010; Crossa et al. 2017). There-
fore, novel algorithms are urgently needed to augment GS 
and its potential in plant breeding.

Deep learning (DL) is a recently developed machine-
learning technique that builds multi-layered neural networks 
containing a large number of neurons to model complex rela-
tionships in big data (large datasets) (LeCun et al. 2015). DL 
has proven capable of improved prediction performance over 
traditional models for speech recognition, image identifica-
tion and natural language processing (LeCun et al. 2015). 
Most recently, however, DL has drawn the attention of sys-
tems biologists, who have successfully applied it to several 
prediction problems: the inference of gene expression (Chen 
et al. 2016; Singh et al. 2016), the functional annotation 
of genetic variants (Quang et al. 2015; Xiong et al. 2015; 
Zhou and Troyanskaya 2015; Quang and Xie 2016), the rec-
ognition of protein folds (Jo et al. 2015; Wang et al. 2016) 
and the prediction of genome accessibility (Kelley et al. 

2016), of enhancers (Kim et al. 2016; Liu et al. 2016), and 
of DNA- and RNA-binding proteins (Alipanahi et al. 2015; 
Zeng et al. 2016; Zhang et al. 2016). These successful appli-
cations in the fields of systems biology and computational 
biology have demonstrated that DL has a powerful capabil-
ity of learning complex relationships from biological data 
(Angermueller et al. 2016; Min et al. 2017). However, to the 
best of our knowledge, the application of DL to GS in plants 
and other organisms has not yet been investigated.

In this study, we present a DL method, named DeepGS, 
to predict phenotypes from genotypes using a deep convo-
lutional neural network (CNN). Unlike the conventional 
statistical models, DeepGS can automatically “learn” com-
plex relationships between genotypes and phenotypes from 
the training dataset, without pre-defined rules (e.g., normal 
distribution, non-zero variance) for various variables in 
the neural network. To avoid overfitting of CNN, DeepGS 
also takes the advantages of DL technologies to reduce the 
complexity of high-dimensional marker data through dimen-
sionality reduction using convolution, sampling and dropout 
strategies. We performed cross-validation experiments on 
a large GS data of wheat [2000 individuals × 33,709 DArT 
(Diversity Array Technology) markers; eight phenotypic 
traits], to evaluate the prediction performance of DeepGS, 
two BLUP-based GS models (GBLUP and RR-BLUP), and 
three conventional feed-forward neural network-based GS 
models. We also proposed an ensemble learning approach 
to combine the predictions of DeepGS and RR-BLUP for 
further improving the prediction performance. The effect of 
outlier individuals and subsets of genotypic markers on the 
performance of DeepGS, RR-BLUP and the ensemble GS 
model was also explored. The source codes, user manuals 
of DeepGS and the ensemble learning approach have been 
packaged as Docker images for public use.

Materials and methods

GS dataset

The GS dataset used in this study contains 2000 Iranian 
bread wheat (Triticum aestivum) landrace accessions, 
each of which was genotyped with 33,709 DArT markers. 
For the DArT markers, an allele was encoded by either 
1 or 0, to indicate its presence or absence, respectively. 
This dataset includes the phenotypes of eight measured 
traits, including grain length (GL), grain width (GW), 
grain hardness (GH), thousand-kernel weight (TKW), 
test weight (TW), sodium dodecyl sulphate sedimentation 
(SDS), grain protein (GP), and plant height (PHT). These 
genotypic and phenotypic data can be obtained from the 
CIMMYT (The International Maize and Wheat Improve-
ment Center) wheat gene bank (http://genom​ics.cimmy​

http://genomics.cimmyt.org/mexican_iranian/traverse/iranian/standarizedData_univariate.RData
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t.org/mexic​an_irani​an/trave​rse/irani​an/stand​arize​dData​
_univa​riate​.RData​). More details for this GS dataset can 
be found in (Crossa et al. 2016).

Tenfold cross‑validation

Cross-validation is a widely used approach to evaluate 
the prediction performance of GS models (Resende et al. 
2012; Crossa et al. 2016; Gianola and Schön 2016; Qiu 
et al. 2016). In a tenfold cross-validation experiment, 
individuals in the whole GS dataset were first randomly 
partitioned into ten groups with approximately equal size. 
The GS model was trained and validated using genotypic 
and phenotypic data of individuals from nine groups (90% 
individuals for the training set; 10% individuals for the 
validation set). The trained GS model was subsequently 
applied to predict phenotypic trait values of individuals 
from the remaining group (testing set) using only geno-
typic data. This process was repeated ten times until each 
group was used once for testing; the predicted phenotypic 
trait values were finally combined for performance evalu-
ation using the mean normalized discounted cumulative 
gain value (MNV) (Blondel et al. 2015).

The MNV measures the performance of GS models 
in selecting the top-ranked k individuals (Blondel et al. 
2015). Given n individuals, the predicted and observed 
phenotypic values form an n × 2 matrix of score pairs (X, 
Y). The MNV can be calculated in an iterative manner:

where d(i) = 1∕(log2 i + 1) is a monotonically decreasing 
discount function at position i; y(i, Y) is the ith value of 
observed phenotypic values Y sorted in descending order, 
here y(1, Y) ≥ y(2, Y) ≥ … y(n, Y);y(i,X) is the correspond-
ing value of Y in the score pairs (X, Y) for the ith value of 
predicted scores X sorted in descending order. Thus, MNV 
has a range of 0 to 1 when all the observed phenotypic val-
ues are larger than zero; a higher MNV(k, X, Y) indicates a 
better performance of the GS model to select the top-ranked 
k (α = k/2000, 1 ≤ k ≤ 2000, 1% ≤ α ≤ 100%) individuals with 
high phenotypic values.

The entire tenfold cross-validation experiment was 
repeated ten times with different seeds used to shuffle 
the order of individuals in the original GS dataset. Thus, 
for each given level of α, this procedure produced ten 
different MNV values, and the average was used as the 
final result.

MNV(k,X, Y) =

⎧⎪⎨⎪⎩

y(1,X)

y(1,Y)
, k = 1

1

k

�
(k − 1)MNV(k − 1,X, Y) +

∑k
i=1

y(i,X)d(i)
∑k

i=1
y(i,Y)d(i)

�
, k > 1,

GS models

Ridge regression‑based linear unbiased prediction 
(RR‑BLUP)

RR-BLUP is one of the most extensively used and robust 
regression models for GS (Wimmer et al. 2013; Bhering 
et al. 2015; Huang et al. 2016). Given the genotype matrix 
Z (n × p; n individuals, p markers) and the corresponding 
phenotype vector Y (n ×1), the GS model is built using the 
standard linear regression formula:

where μ is the mean of phenotype vector Y, g(p × 1) is a 
vector of marker effects, and ε (n × 1) is the vector of ran-
dom residual effects. The ridge regress algorithm is used to 
simultaneously estimate the effects of all genotypic markers, 
under the assumption that marker effects in g(p × 1) follow 
a normal distribution norm ( g ∼ N(0, I�2

g
) ) with a small but 

non-zero variance ( I�2
g
 ) (Whittaker et al. 2000; Endelman 

2011; Riedelsheimer et al. 2012; Desta and Ortiz 2014). I is 
the identity matrix; �2

g
 is the variance of g . The RR-BLUP 

model was implemented using the function “mixed.solve” 
in the R package “rrBLUP” (https​://cran.r-proje​ct.org/web/
packa​ges/rrBLU​P).

DeepGS model

The DeepGS model was built using the DL technique-
deep convolutional neural network (CNN) with an 
8–32–1-architecture; this included one input layer, one 
convolutional layer (eight neurons), one sampling layer, 
three dropout layers, two fully connected layers (32 and 
one neurons) and one output layer (Fig. 1). The input layer 
receives the genotypic matrix (1 × p) of a given individ-
ual. The first convolutional layer filters the input matrix 
with eight kernels that are each 1 × 18 in size with a stride 
size of 1 × 1, followed by a 1 × 4 max-pooling layer with 
a stride size of 1 × 4. The output of the max-pooling layer 
is passed to a dropout layer with a rate of 0.2 for reducing 
overfitting (Srivastava et al. 2014). The first fully con-
nected layer with 32 neurons is used after the dropout layer 
to join together the convolutional characters with a drop-
out rate of 0.1. A nonlinearity active function-rectified 
linear unit (ReLU) is applied in the convolutional and 
first fully connected layers. The output of the first fully 
connected layer is then fed to the second fully connected 
layer with one neural and a dropout rate of 0.05. Using 
a linear regression model, the output of the second fully 
connected layer is finally connected to the output layer 
which presents the predicted phenotypic value of the ana-
lyzed individual.

Y = � + Zg + �,

http://genomics.cimmyt.org/mexican_iranian/traverse/iranian/standarizedData_univariate.RData
http://genomics.cimmyt.org/mexican_iranian/traverse/iranian/standarizedData_univariate.RData
https://cran.r-project.org/web/packages/rrBLUP
https://cran.r-project.org/web/packages/rrBLUP
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To avoid overfitting, the DeepGS was trained on 
the training set and validated on the validation set 
during each fold of cross-validation. Parameters in 
the DeepGS were optimized with the back propaga-
tion algorithm (Rumelhart et al. 1986), by setting the 
number of epochs to 6000, the learning rate to 0.01, 
the momentum to 0.5, and the WD to 0.00001. The 
back propagation process was prematurely stopped, if 
the mean absolute difference between predicted and 
observed phenotypic values on the validation dataset 
became stable. DeepGS was implemented using the 
graphics processing unit (GPU)-based DL framework 
MXNet (version 0.9.3; https​://githu​b.com/dmlc/mxnet​
); it was run on a GPU server that was equipped with 
four NVIDIA GeForce TITAN-XGPUs, each of which 
has 12 GB of memory and 3072 CUDA (Compute Uni-
fied Device Architecture) cores.

An ensemble GS model based on RR‑BLUP and DeepGS

An ensemble GS model (E) was constructed using the ensem-
ble learning approach by linearly combining the predictions 
of DeepGS (D) and RR-BLUP (R), using the formula.

For each fold of cross-validation, parameters ( WD and 
WR ) were optimized on the corresponding validation data-
set using the particle swarm optimization (PSO) algorithm, 
which was developed by inspiring from the social behavior 
of bird flocking or fish schooling (Kennedy and Eberhart 
1995). PSO has the capability of parallel searching on very 
large spaces of candidate solutions, without making assump-
tions about the problem being optimized. Details of the 
parameter optimization using the PSO algorithm are given 
in Online Resource S1.

predictE = (WD × predictD +WR × predictR)∕(WD +WR)

0 1 0 1 0 0 1 1 0 0 1 1 1 0
            MarkersInput layer

Fully-Connected
     layer

Regression Output
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Fully-Connected
     layer

Convolutional
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Dropout

ReLU
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Fig. 1   The DeepGS model is a deep convolutional neural network that has an 8–32–1 architecture. ‘ReLU’ indicates the rectified linear unit; 
Dropout indicates the dropout conduct layer

https://github.com/dmlc/mxnet
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The source codes and user manuals of DeepGS and the 
ensemble learning approach have been packaged into two 
Docker images: one is for central processing unit (CPU) 
computing (https​://hub.docke​r.com/r/malab​/deepg​s_cpu), 
and the other is for GPU computing (https​://hub.docke​
r.com/r/malab​/deepg​s_gpu). These two Docker images pro-
vide a smooth and quick way to run DeepGS on a local 
image since they integrate all dependencies into a stand-
ardized software image, overcoming issues related to code 
changes, dependencies and backward compatibility over 
time. The project homepage of DeepGS is available at 
GitHub (https​://githu​b.com/cma20​15/DeepG​S).

Statistical analysis in this study

The Pearson’s correlation coefficient (PCC) was calculated 
with the function “cor.test” in R programming language 
(https​://www.r-proje​ct.org). The Student’s t test was per-
formed using the R function “t.test” to examine the signifi-
cance level of the difference between paired samples.

Results

Performance comparison between DeepGS 
and other five GS models

To perform the regression-based GS using neural network 
algorithms, we were interested in whether or not the DL-
based neural network model (DeepGS) was more power-
ful than the traditional neural network-based GS models 
and BLUP-based GS models (RR-BLUP and GBLUP). To 
address this task, three fully connected, feed-forward neu-
ral networks (FNNs) with different architectures were built 
using the matlab function “feedforwardnet”: FNN1 with 
an 8–32–1 architecture (i.e., eight nodes in the first hidden 
layer, 32 nodes in the second hidden layer, and one node in 
the output layer), FNN2 with an 8-1 architecture and FNN3 
with an 8–32–10–1 architecture. In each of these three 
FNNs, nodes in one layer were fully connected to all nodes 
in the next layer. Two BLUP-based GS models were con-
structed using RR-BLUP and GBLUP, respectively. The RR-
BLUP was implemented using the function “mixed.solve” 
in the R package “rrBLUP” (https​://cran.r-proje​ct.org/web/
packa​ges/rrBLU​P). The GBLUP was implemented using 
the function “BGLR” in the R package “BGLR” (https​://
cran.r-proje​ct.org/web/packa​ges/BGLR). The tenfold cross-
validation with ten replicates was performed to evaluate the 
performance of DeepGS and FNN for predicting the phe-
notypic values of the eight tested traits using 33,709 DArT 
markers.

Figure 2 illustrates the performance of these six GS mod-
els (DeepGS, FNN1, FNN2, FNN3, RR-BLUP, GBLUP) in 

predicting grain length (GL) in one tenfold cross-validation 
experiment. The experimental results show that DeepGS, 
RR-BLUP and GBLUP yielded a high correlation between 
predicted and observed grain lengths, corresponding to a 
Pearson’s correlation coefficient (PCC) value of 0.742, 0.737 
and 0.731, respectively (Fig. 2a). The other three GS models 
(FNN1, FNN2, and FNN3) yielded relatively low PCC val-
ues, corresponding to 0.409, 0.363, and 0.428, respectively. 
Correspondingly, the predictions of DeepGS, RR-BLUP and 
GBLUP had markedly lower absolute differences (paired 
samples t test; p value < 1.0E-59) between observed and pre-
dicted phenotypic values compared with those for the FNN1, 
FNN2, and FNN3 (Fig. 2b). The MNV was further used to 
evaluate the performance of these six GS models for select-
ing individuals with long grain length. With top-ranked 
α increasing from 1% to 100%, the MNV of the DeepGS 
model (0.42–0.68) was significantly higher than that of 
RR-BLUP (0.35–0.66) and GBLUP (0.34–0.66), FNN1 
(0.26–0.41), FNN2 (0.16–0.34), and FNN3 (0.19–0.41) 
(Fig. 2c). Online Resource S2 depicts the average MNV 
curves obtained using the tenfold cross-validation with ten 
replicates for each of these six GS models. We observed the 
superiority of DeepGS, RR-BLUP and GBLUP over FNNs 
(FNN1, FNN2, and FNN3) in terms of MNV for the predic-
tion of GL and the other seven traits under study (Online 
Resource S2). Of note, a different architecture for the FNN 
might lead to different results (Fig. 2; Online Resource S2). 
In addition, due to the comparable performance of GBLUP, 
RR-BLUP was used as a representative BLUP-based GS 
model in the following sections.

DeepGS is a complement to RR‑BLUP for selecting 
individuals with high phenotypic values

As reported in the aforementioned section, PCC analysis 
between observed and predicted phenotypic values showed 
that DeepGS and RR-BLUP yielded comparable PCC val-
ues for each of the eight tested traits (Online Resource 
S3). Further PCC analysis showed that the PCC value of 
DeepGS and RR-BLUP strongly decreased in the pheno-
type prediction for individuals with high phenotypic values 
(Online Resource S3). When focusing on the top-ranked 400 
individuals with the longest grain length, the PCC value of 
DeepGS and RR-BLUP was decreased to ~ 0.275 (Online 
Resource S3). These results indicated that neither DeepGS 
nor RR-BLUP performed particularly well on the individuals 
with high phenotypic values. Therefore, in the prediction of 
phenotypes from genotypes, more efforts need to be focused 
on the individuals with high phenotypic values.

Considering that DeepGS and RR-BLUP used different 
algorithms to build regression-based GS models, we sus-
pected that they may capture different aspects of the rela-
tionships between genotypes and phenotypes. As expected, 

https://hub.docker.com/r/malab/deepgs_cpu
https://hub.docker.com/r/malab/deepgs_gpu
https://hub.docker.com/r/malab/deepgs_gpu
https://github.com/cma2015/DeepGS
https://www.r-project.org
https://cran.r-project.org/web/packages/rrBLUP
https://cran.r-project.org/web/packages/rrBLUP
https://cran.r-project.org/web/packages/BGLR
https://cran.r-project.org/web/packages/BGLR
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we observed the differences between these two GS models 
in their ranking of individuals with different orders. For 
instance, among the top-ranked 400 (α = 20%) individuals 
with the longest grain length (purple dots in Fig. 3a), 198 
were ranked to be top 400 by both of these two GS models 
(purple dots in region III in Fig. 3b, c), 32 (purple dots in 
region I in Fig. 3b, c) and 27 (purple dots in region II in 
Fig. 3b, c) of which were specifically ranked to be top 400 
by DeepGS and RR-BLUP, respectively. This result indi-
cated that DeepGS and RR-BLUP have different strengths 
in ranking individuals with high phenotypic values for the 
trait of grain length. This difference was also evident for the 
prediction of grain length when α varied from 1 to 100% 
(Fig. 3b), indicating the complementarity between DeepGS 
and RR-BLUP. Besides grain length, the complementarity 
was also found in the prediction of the other seven traits 
under study (Online Resource S4).

To make full use of the complementarity between 
DeepGS and RR-BLUP, we introduced an ensemble GS 
model that simultaneously considered the predicted phe-
notypic values from these two GS models based on parti-
cle swarm optimization (PSO) algorithms. Experimental 

results of tenfold cross-validation with ten replicates 
showed that the ensemble GS model yielded significant 
higher MNV values than RR-BLUP for all tested traits 
(except PHT) when top-ranked α ranged from 1 to 100% 
(paired samples t test; Online Resource S5–S6). Obvi-
ously, the ensemble GS model substantially improved the 
prediction performance over RR-BLUP and DeepGS for 
GH, TKW, TW, SDS, and PHT (Fig. 3d; Online Resource 
S5–S6). Compared with RR-BLUP, DeepGS improved the 
MNVs by 0.46–1.55 × 1.0E-02 for TW, while the ensemble 
GS model improved the MNVs by 1.13–3.39 × 1.0E-02 for 
TW (Online Resource S5).

These results indicated that the DeepGS can be used 
as a supplementary to the RR-BLUP model in selecting 
individuals with high phenotypic values for all of the eight 
tested traits.

Outlier individuals and their effects on prediction 
performance

An outlier individual is one with an extremely high or low 
phenotypic value for a particular trait under study. These 
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outlier individuals are valuable for breeding programs and 
for identifying trait-related genes in the bulked sample anal-
ysis (Zou et al. 2016). We were interested in how the respec-
tive performance of DeepGS and RR-BLUP models might 
be affected by outlier individuals. For each of the eight traits, 
the outlier individuals were defined as above 75% quartile 
(Q3) plus 1.5 times the interquartile range (IQR = Q3–Q1) 
and below 25% quartile (Q1) minus 1.5 times IQR of phe-
notypic values. As a result, there were 50, 22, 40, 19, and 
65 outlying individuals detected for GL, GW, TW, GP and 
PHT, respectively (Online Resource S7a). We re-evaluated 
the performance of RR-BLUP, DeepGS, and the ensemble 
GS model using the tenfold cross-validation with ten repli-
cates, in which outlying individuals were omitted from the 
training analysis.

We observed that RR-BLUP and DeepGS are differ-
entially sensitive to outlier individuals (Online Resource 
S7b). After the removal of outlier individuals, DeepGS still 

yielded a higher prediction performance than it did by RR-
BLUP for all tested five traits at some levels of � (Fig. 4; 
Online Resource S7c). As expected, the ensemble GS model 
always yielded a higher prediction performance than it did 
by RR-BLUP for all tested five traits at all possible levels 
of � ( 1% ≤ � ≤ 100% ) (Fig. 4; Online Resource S7c). The 
corresponding absolute increase in MNV was as high as 
14.1 × 1.0E-02 for trait PHT at the level of α = 1% (Online 
Resource S7c–S8).

These results indicate that, even after omitting the outlier 
individuals from the training set, DeepGS and the ensemble 
GS models outperform RR-BLUP in selecting individuals 
with high phenotypic values for all tested traits.

Marker number effect on prediction performance

Various technology platforms have been developed to gen-
erate genotypic markers with different size. The number 
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Fig. 3   Performance comparison of RR-BLUP, DeepGS, and the 
ensemble GS model for the prediction of grain length. a Comparison 
of predicted grain length for RR-BLUP and DeepGS. Dots in pur-
ple represent the top 400 ranked individuals with the longest grain 
length. Dots in region I and II denote individuals predicted to be 
top 400 ranked by DeepGS. Dots in region II and III indicate indi-
viduals predicted to be top 400 ranked by RR-BLUP. b Percentages 

of individuals with the longest grain length identified by RR-BLUP 
and DeepGS, for which the dashed line represents the α of 20% (i.e., 
the top-ranked 400 individuals). c Numbers and percentages of top-
ranked 400 individuals with longest grain lengths predicted to be top 
400 ranked by RR-BLUP and DeepGS. d The absolute increases in 
MNV of DeepGS and the ensemble GS models over RR-BLUP eval-
uated using tenfold cross-validation with ten replicates
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of genotypic markers has been reported to have significant 
influences on the prediction performance of GS models 
(Heffner et al. 2011). In this analysis, we examined the effect 
of marker number on prediction performance of RR-BLUP, 
DeepGS, and the ensemble GS model. For each of the eight 
tested traits, the tenfold cross-validation experiment was per-
formed using a different number of randomly selected mark-
ers at 5000, 10,000, and 20,000. This process was repeated 
ten times to generate ten MNVs of a given α for each marker 
number. Their average served as the final prediction perfor-
mance of the GS models.

When the marker number decreased from 20,000 to 
5000, the advantage of DeepGS over RR-BLUP in select-
ing individuals with high phenotypic values was consist-
ently observed for five of eight tested traits (GL, GW, TKW, 
GP and PHT), while for the ensemble GS model, the MNV 
improvement over RR-BLUP could be observed for all tested 
traits except SDS and GP (Fig. 5). Interestingly, when 5000 
markers were used, DeepGS yielded a relatively lower MNV 
than RR-BLUP at all possible levels of � ranging from 1 to 
100% for GH and SDS (Fig. 5c). However, by combining 
predictions of DeepGS and RR-BLUP, the ensemble GS 
model generated higher MNV values than RR-BLUP.

Fig. 4   MNV curves of RR-
BLUP, DeepGS and the ensem-
ble GS models evaluated using 
the tenfold cross-validation 
with ten replicates. Outlying 
individuals were omitted in the 
training process. a–e Predic-
tion performance for grain 
length (GL), grain width (GW), 
thousand-kernel weight (TW), 
grain protein (GP), and plant 
height (PHT), respectively
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These results indicated that DeepGS outperforms RR-
BLUP even when a subset of 33,709 markers was used and 
could be used as a supplementary to RR-BLUP in select-
ing individuals with high phenotypic values for most of the 
tested traits.

Discussion

GS is currently revolutionizing the applications of plant 
breeding, and novel prediction models are crucial for accu-
rately predicting phenotypes from genotypes (Jannink et al. 
2010; Jonas and de Koning 2013; Desta and Ortiz 2014). DL 
is a recently developed machine-learning technique, which 

has the capability of capturing complex relationships hidden 
in big data. In this study, we explored the application of DL 
in the field of GS. The main contributions are the follow-
ing: (1) We successfully applied the DL technique to build a 
novel and robust GS model for predicting phenotypes from 
genotypes. (2) We implemented the DeepGS model as an 
open source R package “DeepGS”, thus providing a flex-
ible framework to ease the application of DL techniques in 
GS. This R package also provides functions to calculate the 
MNV and to implement the RR-BLUP model as well as the 
cross-validation procedure. (3) We proposed an ensemble 
learning approach to get a better performance through com-
bining the predictions of DeepGS and RR-BLUP.
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There are two caveats that we should mention for the 
application of DL in the GS. First, the design of appropri-
ate network architectures requires considerable knowledge 
of DL and neural network. In this study, the genotyping 
markers are DArT markers encoded with a binary (1 or 0) 
allele call. In the convolutional layer, eight neurons were 
expected to be used to capture the information from paired 
alleles deriving from four basic features (00, 01, 10, and 
11). While in the first fully connected layer, 32 neurons 
were used to capture information from these four basic 
features and their high-ordered features (e.g., six features 
between two of them, three features among three of them, 
and one feature among all of them). In the second fully 
connected layer, the input features were summarized to be 
a feature for the regression output. Therefore, we designed 
the DeepGS model with an 8–32–1 architecture. We note 
that a different architecture designed for DeepGS may lead 
to comparable or superior performance on the GS dataset 
used in this study (Online Resource S9).

Second, the convolutional, sampling, dropout, and fully 
connected layers have different sets of hyper-parameters 
each and thus handle different parts of the data characteris-
tics, resulting in a challenge of understanding the inherent 
biological significances in the CNN (Angermueller et al. 
2016; Chen et al. 2016; Min et al. 2017). We performed a 
primary analysis to explore the marker effects in the CNN 
for the prediction of grain length (Online Resource S10), 
and found that both DeepGS and RR-BLUP identified a 
proportion of markers with relatively high effects (Online 
Resource S11). For the top-ranked 1000 markers with the 
highest effect (absolute value), 24 are common in both GS 
models. Further investigation of these DeepGS-specific 
markers with high effects would be helpful in elucidating 
their contributions to phenotypic variations.

In summary, this research work opens up a new avenue 
for the application of the DL technique in the field of GS. In 
the future, we will cooperate with population geneticists and 
continue to amend our DeepGS to enable it to explain the 
detected relationships between phenotypes and genotypes. In 
addition, we will cooperate with crop breeders and carry out 
practical applications of DeepGS in the GS-based breeding 
programs of wheat and other vital crops.
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