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A B S T R A C T   

Phosphorus acts as an essential macroelement in plant growth and development. A lack of phosphate (Pi) in 
arable soil and phosphate fertilizer resources is a vital limiting factor in crop yields. Calcineurin B-like proteins 
(CBLs) act as one of the most important calcium sensors in plants; however, whether CBLs are involved in Pi 
deficiency signaling pathway remains largely elusive. In this study, we utilized a reverse genetic strategy to 
screen Arabidopsis thaliana T-DNA insertion mutants belonging to the CBL family under Pi deficiency conditions. 
The cbl1 mutant exhibited a relatively tolerant phenotype, with longer roots, lower anthocyanin content, and 
elevated Pi content under Pi deficiency, and a more sensitive phenotype to arsenate treatment compared with 
wild-type plants. Moreover, CBL1 was upregulated, and the mutation of CBL1 caused phosphate starvation- 
induced (PSIs) genes to be significantly induced under Pi deficiency. Histochemical staining demonstrated 
that the cbl1 mutant has decreased acid phosphatase activity and hydrogen peroxide concentrations under Pi 
deficiency. Collectively, our results have revealed a novel role of CBL1 in maintaining Pi homeostasis.   

1. Introduction 

Phosphorus (P) is an essential macronutrient for plant growth and 
development that plays vital roles in multiple biochemical processes in 
plant cells, including energy metabolism, signal transduction, photo-
synthesis, and respiration. Although P is abundant in soil, most organic 
and inorganic phosphorus are unavailable to plants. The concentration 
of phosphate (Pi), the inorganic form of P that is taken up and utilized by 
plants, is extremely low in soil (less than 10 μM) (Luan, 2009; Lambers 
et al., 2015). A lack of Pi leads to the accumulation of anthocyanin, with 
dark green leaves, growth retardation, and reduced yield. Thus, Pi 
deficiency is becoming one of the most limiting factors for sustainable 
crop production (Puga et al., 2017). In order to improve agricultural 
productivity, a large amount of Pi fertilizer is applied to soil, which 
causes serious environmental problems such as eutrophication of water 
sources (Conley and Likens, 2009). Hence, exploring mechanisms for 
achieving sustainable P utilization efficiency has become an urgent 
objective in plant breeding research (Heuer et al., 2017). 

Pi deficiency seriously inhibits primary root growth and induces the 
formation of lateral roots and root hairs. To cope with Pi deficiency, 

plants have evolved a range of adaptations that improve Pi absorption 
and translocation, thus maintaining cellular Pi homeostasis (Rouached 
et al., 2010). The initial uptake and remobilization of Pi are regulated by 
Phosphate Transporter 1 (PHT1) proteins. PHT1 proteins play important 
roles in Pi uptake and allocation from the rhizosphere (Gu et al., 2016; 
Versaw and Garcia, 2017; Xu, 2018). PHT1;1 and PHT1;4, which are 
functionally redundant, mainly function in Pi uptake in roots under both 
low- and high-Pi conditions (Shin et al., 2004). PHO1, a member of the 
SPX-EXS subfamily, functions in Pi transfer from root epidermal and 
cortical cells to xylem and facilitates Pi translocation from root to shoot 
(Hamburger, 2002; Vogiatzaki et al., 2017). PHR1 (Phosphate-starva-
tion Response 1) and PHR1-LIKE1 (PHL1), which have been identified as 
master transcription factors, play central roles in controlling the phos-
phate response of multiple targets by interacting with P1BS cis-elements, 
including PHTs, IPS1, RNS1, and SPX1 (Rubio et al., 2001; Bustos et al., 
2010; Thibaud et al., 2010). 

Calcium (Ca2+) is a ubiquitous second messenger in eukaryote cells 
that plays an important role in signal transduction in response to in-
ternal and external stimuli. Ca2+ signatures are perceived by Ca2+ sen-
sors, such as calmodulin (CaMs), calmodulin-like protein (CMLs), 
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calcium-dependent protein kinases (CDPKs), and calcineurin B-like 
proteins (CBLs) families. The CBL protein harbors four elongation factor 
hands (EF-hands) which are responsible for Ca2+ binding (Luan, 2009; 
Hashimoto and Kudla, 2011; Kudla et al., 2018). 

CBLs can form functional complexes with CBL interacting protein 
kinases (CIPKs), which not only respond to external adverse stimuli, such 
as drought, salt, cold, and immune stress responses, but also regulate the 
dynamic balance of diverse intracellular ions, including K+, Na+, Mg2+, 
NO3

− , and PO4
3- (Zhu, 2016; Kudla et al., 2018; Zhang et al., 2019; Chai 

et al., 2020; Lu et al., 2020). For example, the CBL1/9-CIPK23 complex 
activates AKT1 (Arabidopsis K+ transporter 1) and HAK5 (high-affinity K+

transporter 5) to enhance K+ absorption under low-potassium conditions 
(Xu et al., 2006; Ragel et al., 2015); moreover, the CBL1-CIPK23 complex 
can phosphorylate and activate CHL1/NRT1.1 (nitrate transporter1.1) to 
mediate both high-affinity and low-affinity nitrate uptake (Ho et al., 
2009; Leran et al., 2015), and the CBL1/CBL9-CIPK23 complex can 
trigger the phosphorylation of S-type anion channel SLAC1 or SLAH3 to 
mediate stomatal opening (Tobias et al., 2014). The well-characterized 
salt overly sensitive (SOS) pathway comprising CBL4-CIPK24-SOS1 (a 
plasma membrane Na+/H+ antiporter) plays a vital role in salt tolerance 
(Liu et al., 2000; Qiu et al., 2002, 2004). CBL2/CBL3 with 
CIPK3/9/23/26 are involved in vacuolar Mg2+ sequestration to protect 
plants from Mg2+ toxicity (Ren-Jie et al., 2015). Additionally, previous 
studies have demonstrated that CBL1 mutations can impair plant re-
sponses to drought, salt, cold, glucose, and aluminum (Cheong, 2003; 
D’Angelo et al., 2006; Li et al., 2013; Ligaba-Osena et al., 2017). Although 
the CBL-CIPK complexes exhibit essential roles in the homeostasis of 
various ions in cells, whether they are also involved in the regulation of 
the Pi deficiency signaling pathway remains unknown. 

In this study, we utilized a reverse genetic strategy to identify CBL1 
as a negative regulator in the Pi deficiency signaling pathway in Arabi-
dopsis. The isolated cbl1 mutant exhibited a relatively tolerant pheno-
type under Pi deficiency conditions and a more sensitive phenotype 
under arsenate treatment compared to wild-type plants. The CBL1 mu-
tation led to increased transcription of multiple phosphate starvation- 
induced genes, including PHT1;1, PHT1;4, PHT1;5, IPS1, and RNS1. 
Moreover, the cbl1 mutant had decreased acid phosphatase activity and 
hydrogen peroxide concentrations. This novel discovery expands our 
understanding of CBL1 functions in Pi homeostasis. 

2. Materials and methods 

2.1. Plant materials and growth conditions 

Arabidopsis thaliana Ws seedlings (ecotype Wassilewskji), except for 
materials in Fig. S1, were used as the wild type in various experiments. 
The T-DNA insertion mutant lines including cbl1 (NASC ID: N9888), cbl2 
(SALK_151426), cbl3 (SAIL_785_C10), cbl5 (GK-276F07), cbl7 
(SAIL_100_F5), and cbl9 (SALK_142774) were obtained from the Not-
tingham Arabidopsis Stock Center (NASC). For phenotypic assays, seeds 
of Arabidopsis thaliana were surface sterilized with 8% NaClO (v/v) and 
then stratified for three days at 4 ◦C. Seeds were sown on Petri dishes 
containing 1/2 Murashige and Skoog Basal medium (MS) for five days, 
and then seedlings were transferred to Pi-sufficient (1/2 MS) or LP (MS 
without phosphate, Caisson, USA) medium to contain 50 μM Pi (sup-
plied with KH2PO4) or 1/2 MS + As(V) media (As(V) final concentration: 
500 μM). LP contained different IAA supplementations (50, 100 nM) as 
indicated in the figures, with 1% sucrose and 1% agar (Solarbio, China) 
at pH 5.7 with a 16-h light / 8-h dark cycle at 22 ◦C. 

For the complementation test of the cbl1 mutant, a DNA fragment 
harboring the 1991-bp promoter, the gene, and 1.0-kb downstream 
sequence of CBL1 (AT4g17615) was amplified and cloned into a binary 
vector pCAMBIA1381. 35S:CBL1 overexpression lines were generated 
by cloning the coding sequence of CBL1 into a pCAMBIA1307 vector. 
The resultant vectors were transformed into the cbl1 mutant by the 
Agrobacterium-mediated floral dip method, and the homozygous lines 

were obtained. The primers used for plasmids constructions are listed in 
Table S1. 

2.2. Physiological measurements 

Anthocyanin content was measured as previously described (Lu 
et al., 2014). Seedlings were homogenized in extraction buffer (prop-
anol/HCl/water [18:1:81]). After centrifugation for 10 min at 12,000 g, 
the supernatant was collected for measuring absorbance at 535 nm and 
650 nm. Relative anthocyanin concentration was calculated using the 
following equation: (A535 – [2*A650]) / fresh weight (grams). 

Hydrogen peroxide accumulation was determined by staining roots 
using a DAB Immunohistochemistry Color Development Kit according to 
the manufacturer’s instructions (Sangon Biotech). 

In vivo APase activity staining was detected as follows (Tomscha 
et al., 2004). Five-day-old seedlings grown for an additional four days in 
MS and Pi deficiency medium were transferred to 0.1 % (w/v) 5-bro-
mo-4-chloro-3-indolyl phosphate solution and incubated at 37 ◦C for 
30 min. After clearance in 70 % (w/v) alcohol for 4 h, roots were 
captured using the Olympus microscope. 

To determine Pi content, seven-day-old seedlings germinated on 1/2 
MS (Murashige and Skoog Basal medium) were transferred to the 
modified Hoagland solution (1 mM KNO3, 1 mM CaNO3, 0.4 mM MgSO4, 
0.2 mM NH4H2PO4, 3 μM H3BO3, 1 μM (NH4)6Mo7O24, 0.4 μM ZnSO4, 
0.2 μM CuSO4, 20 μM Fe(III)-EDTA) for two weeks. Seedlings were then 
transferred to control and LP solutions (final Pi concentration, 5 μM) for 
seven days, and shoots and roots were harvested for Pi content analysis 
using ascorbate-molybdate-antimony methods (Liu et al., 2015; Zheng 
et al., 2019). 

GUS analysis 
For construction of proCBL1:GUS, a 1991-bp promoter region of 

CBL1 was amplified and fused to a pCAMBIA1381 vector containing the 
uidA gene encoding β-glucuronidase (GUS) and transformed into wild 
type by the Agrobacterium-mediated floral dip method. For GUS staining, 
T3 homozygous transgenic lines were used. Seedlings were immersed in 
staining buffer (O’BioLab, Beijing) and then incubated at 37 ◦C for 6 h. 
Stained samples were subjected to gradient ethanol (20 %, 35 %, 50 %, 
and 70 %) to remove chlorophyll. Samples were observed with a mi-
croscope (MZ10 F, Olympus). 

2.3. Quantitative real-time PCR analysis 

For expression analysis of CBL1 in response to Pi deficiency, seeds 
were grown on Petri dishes containing Pi-sufficient (1/2 Murashige and 
Skoog Basal medium, Sigma) medium for seven days, and then seedlings 
were transferred to 1/2 MS and Pi-deficient medium for three days. 
Total RNA was extracted using TRIzol reagent (TIANGEN). The first- 
strand cDNA was synthesized by FastKing RT Kit with gDNAase 
(TIANGEN). Quantitative real-time PCR (qRT-PCR) was performed 
using ChamQ SYBR qPCR Master Mix (Vazyme) on a Roche Applied 
Science LightCycler 480 system. ACTIN2 was used as an internal control. 
The primers used for qRT-PCR are listed in Table S1. 

2.4. Statistical analysis 

Statistical significance of differences between mean values was 
determined using Student’s t test. Different asterisks against error bars of 
histograms are used to indicate means that are statistically different at P 
< 0.05. 

3. Results 

3.1. The cbl1 mutant is tolerant to Pi deficiency and sensitive to arsenate 

To determine whether CBL family proteins are involved in Pi defi-
ciency signaling transduction, we implemented a reverse genetic 
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Fig. 1. The cbl1 mutant is tolerant to Pi deficiency and sensitive to arsenate. a Phenotype of WT and cbl1 mutant under MS, LP and As(V) medium. Seeds were 
germinated on 1/2 MS agar medium for five days, then seedlings were transferred to 1/2 MS, Pi deficient medium (50 μM), and 1/2 MS + As(V) (500 μM) for another 
seven days. b Root hair development in WT and cbl1 mutant under Pi deficient and As(V) medium. c Statistics on root elongation of seedlings as in a. d Leaf color of 
WT and cbl1 mutant under MS and Pi deficient medium. Bars: 1 mm. e Anthocyanin concentration of WT and cbl1 mutant under MS and Pi deficient medium (50 μM). 
The data are representative of three independent experiments. Results are expressed as the means ± SD. Asterisks indicate significant differences between the cbl1 
mutant and WT (Student’s t-test: ***, P < 0.001). 
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strategy to screen genes encoding CBLs for T-DNA insertion mutants 
(cbl1, cbl2, cbl3, cbl5, cbl7, and cbl9) under Pi deficiency conditions 
(Fig. S1). Strikingly, we found that the cbl1 knockout mutant displayed a 
significantly tolerant phenotype under Pi deficiency conditions (LP, 50 
μM), with much longer roots, fewer and shorter root hairs, and lower 
anthocyanin content relative to wild-type (WT) plants, while root 
elongation of the cbl1 mutant was similar to that of WT plants grown on 
1/2 MS medium (Fig. 1). As arsenate As(V) has chemical properties that 
resemble those of phosphate, it can readily enter plant cells via phos-
phate transporters (Shin et al., 2004; Catarecha et al., 2007). Thus, we 
treated cbl1 mutant with high As(V) concentrations and found that the 
cbl1 mutant exhibited a more sensitive phenotype in response to As(V) 
stress than did WT plants, with 35 % less root elongation (Fig. 1a,c). 
These results indicated that the cbl1 mutant was more tolerant to Pi 
deficiency stress and more sensitive to arsenate treatment than WT 
plants. 

3.2. Total Pi accumulation enhanced by CBL1 mutation 

To examine whether the CBL1 mutation influences Pi accumulation, 
we grew WT and cbl1 mutant seedlings in 1/5 modified Hoagland so-
lution for two weeks and then transferred the seedlings to either Pi- 
sufficient (Control) or Pi-deficient (LP, 5 μM) Hoagland solution for 
another week. The Pi content of the shoots and roots was measured and 
analyzed. Pi content accumulation in cbl1 mutant shoots was higher 
than that in the WT under the control conditions, and both the shoots 
and roots Pi content of the cbl1 mutant were significantly elevated under 
LP conditions compared with the control conditions (Fig. 2). Thus, the 
cbl1 mutant exhibited enhanced Pi uptake. 

3.3. CBL1 expression is upregulated by Pi deficiency 

To obtain insight into whether CBL1 is involved in Pi deficiency 
signaling, the levels of CBL1 expression in the shoots and roots of plants 
under 1/2 Murashige and Skoog Basal medium (MS) and LP conditions 
were determined by real-time qRT-PCR. We found that CBL1 was 
expressed ubiquitously in shoot and root tissues, and the expression of 
CBL1 increased significantly both in shoots and roots under Pi deficiency 
conditions (Fig. 3a). To determine the tissue-specific expression of CBL1, 
we fused an approximately 2.0-kb CBL1 promoter to the uidA gene 
encoding GUS and then introduced the construct into WT plants through 
Agrobacterium-mediated transformation. GUS staining of homozygous 
lines revealed tissue-specific differences in GUS activity between treat-
ments. In the shoots, strong GUS activity was observed in leaves, 
including within the hypocotyl zone; in the roots, GUS expression was 

confined to the central vascular tissue in mature zones and root tips 
under MS medium, with GUS staining enhanced under the Pi deficiency 
treatment (Fig. 3b). To confirm the induction of CBL1 expression under 
Pi deficiency, we also conducted the GUS staining on plants grown under 
0, 1, 10, and 100 μM Pi conditions (Fig. S2). Collectively, these results 
showed that CBL1 gene expression was regulated by Pi availability. 

3.4. Transcription of PSI genes promoted by CBL1 mutation 

To cope with Pi deficiency, plants have evolved a series of Pi star-
vation response processes that regulate Pi transporter activity at the 
transcriptional and/or post-transcriptional level to maintain Pi homeo-
stasis. Pi deficiency significantly induces the expression of multiple 
phosphate starvation-induced (PSI) genes, including phosphate trans-
porters (PHTs), AtIPS1, and AtRNS1 (Bari et al., 2006; Martin et al., 
2010; Lin et al., 2013; Sun et al., 2016). We performed qRT-PCR to 
measure transcription levels of transporter genes in WT and cbl1 mutant 
plants. Thus, Pi deficiency stress induced expression of PHT1s, especially 
in the cbl1 mutant; PHT1;4 and PHT1;5 gene expression was consider-
ably elevated in cbl1 mutant compared to WT plants. The expression 
levels of the Pi starvation-induced genes IPS1 and RNS1 were also 
markedly increased in the cbl1 mutant under Pi deficiency (Fig. 3c). 
These findings may suggest that CBL1 negatively regulates the Pi defi-
ciency response. 

3.5. Phenotype of CBL1 complementation and overexpression lines 

To confirm that CBL1 is involved in Pi deficiency signal transduction, 
we conducted a complementation test on the cbl1 mutant by introducing 
a WT CBL1 gene comprising an approximately 2.0-kb promoter and full 
genomic sequence of CBL1 into the cbl1 mutant. The CBL1 transcript was 
not detectable in the cbl1 mutant, but the transcript was restored to the 
WT level in the complementation lines COM#1, COM#2, and COM#3, 
as shown by RT-PCR (Fig. 4a) The tolerant phenotype of the cbl1 mutant 
was fully restored in the cbl1 mutant in the T3 generation of the 
complementation lines under Pi deficiency conditions (Fig. 4b,c). 

Meanwhile, we also generated CBL1 overexpression lines by intro-
ducing the coding sequence of CBL1 into the pCAMBIA1307 vector. The 
T3 overexpression lines were determined by qRT-PCR, and the CBL1 
transcript level in the transgenic lines OE#3, OE#5, and OE#6 was at 
least five-fold higher than WT (Fig. 4d). Phenotypic analysis demon-
strated that the root growth was significantly inhibited in OE#3, OE#5, 
and OE#6 compared with WT (Fig. 4e,f). These results indicated that 
CBL1 shapes the root system architecture under Pi deficiency. 

Fig. 2. Mutation of CBL1 enhances total Pi 
accumulation. a Total Pi content in shoots of 
WT and cbl1 mutant under control and Pi defi-
cient conditions. Seedlings were cultured in 
Hoagland solution (control, Pi sufficient) for 
two weeks, then seedlings were transferred to 
control and Pi deficient solution (5 μM) for 
another seven days, then total Pi content was 
measured. b Total Pi content in roots of WT and 
cbl1 mutant under control and Pi deficient 
conditions. Seedlings were cultured in Hoag-
land solution (Control, Pi sufficient) for two 
weeks, then seedlings were transferred to con-
trol and Pi deficient solution (5 μM) for another 
seven days, then total Pi content was measured. 
The data are representative of three indepen-
dent experiments. Results are expressed as the 
means ± SD. Asterisks indicate significant dif-
ferences between cbl1 mutant and WT (Stu-
dent’s t-test: *, P < 0.05; **, P < 0.01 and ***, P 
< 0.001).   
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Fig. 3. CBL1 mutation causes increased tran-
scription of PSI genes. a Expression of CBL1 in 
response to Pi deficiency. qRT-PCR analysis of 
CBL1 expression from shoots and roots of wild- 
type seedlings. Transcript level of CBL1 was 
quantified relative to ACTIN2. Values represent 
means ± SD of biological replicates. b Tissue- 
specific expression pattern of CBL1 in response 
to Pi deficiency. 1991 bp of CBL1 promoter was 
fused with uidA gene encoding GUS and trans-
formed into WT plants for GUS analysis. c 
Relative expression of PHT1;1, PHT1;4, PHT1;5, 
IPS1, and RNS1 gene. Transcript level of 
different genes was quantified relative to 
ACTIN2. Results are expressed as the means ±
SD. Asterisks indicate significant differences 
(Student’s t-test: *, P < 0.05; **, P < 0.01 and 
***, P < 0.001).   
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3.6. Mutation of CBL1decreases acid phosphatase activity and hydrogen 
peroxide 

As Pi deficiency can induce additional physiological responses, 
including increased acid phosphatase (APase) activity in roots (Del 
Vecchio et al., 2014), we determined the impact of the CBL1 mutation on 
APase activity. On the Pi-deficient medium, roots of WT seedlings 
exhibited higher levels of staining, indicating that APase activity was 
stimulated as expected. In contrast, less staining of APase activity was 
observed in the cbl1 mutant, while there was stronger staining in the 
CBL1 OE#3 line (Fig. 5a,b). Thus, the decreased APase of cbl1 mutant 
may be a feedback regulation result, but not the reason of Pi increase. 

Reactive oxygen species (ROS) play a key role in many metabolic 

processes in plants. The ROS content of roots increases rapidly under Pi 
deficiency, and the ROS distribution changes associated with Fe accu-
mulation may determine the architecture of root systems under Pi- 
deficient conditions (Chiou and Lin, 2011; Ham et al., 2017; Zheng 
et al., 2019). To investigate whether increased root elongation in low-Pi 
medium was induced by altered ROS concentrations, we performed in 
situ DAB staining to measure H2O2 accumulation in root tips. There was 
no difference in DAB staining intensity among the root tips of WT, cbl1 
mutant, and CBL1 OE#3 plants grown on the 1/2 MS medium; however, 
under Pi deficiency conditions, the DAB staining signal in the cbl1 
mutant was significantly lower than that in the WT plants, suggesting 
that H2O2 concentrations were reduced in the cbl1 mutant, but there was 
no difference between the CBL1 OE#3 line and WT plants (Fig. 5c, d). 

Fig. 4. Phenotypic analysis of CBL1 complementation and overexpression lines. a RT-PCR analysis of CBL1 and ACTIN2 mRNA levels in WT, cbl1 mutant, and three 
complementation lines transformed with CBL1 genomic DNA (COM#1 COM#2 and COM#3). b Phenotype of WT, cbl1 mutant, and complementation lines under MS 
and LP medium. c Statistics on root elongation of seedlings as in b. d Expression level of CBL1 in transgenic overexpression lines (OE#3, OE#5 and OE#6) by qRT- 
PCR. e Phenotype of WT, cbl1 mutant, and CBL1 OE#3, OE#5, OE#6 under MS and LP medium. f Statistics on root elongation of seedlings as in e. Values represent 
means ± SD of biological replicates. Asterisks indicate significant differences (Student’s t-test: *, P < 0.05; **, P < 0.01 and ***, P < 0.001). 
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Available evidence demonstrated that auxin plays an essential role in 
mediating root system architecture under phosphate deficiency 
(Pérez-Torres et al., 2008; Bhosale et al., 2018). The primary root 
growth of the WT, cbl1 mutant, and CBL1 OE lines in response to IAA 
supplementation was then characterized. Results demonstrated that the 
Pi deficiency phenotype among WT, cbl1 mutant, and CBL1 OE trans-
genic lines was disappeared, indicating that the response of root system 
architecture of CBL1 in response to Pi deficiency may be involved in the 
auxin signal pathway (Fig. S3). 

4. Discussion 

Pi is a macronutrient that is important for plant growth and devel-
opment. However, the amount of available Pi in soil for plant growth is 
often limited, and about 70 % of global soil suffers from Pi deficiency, 
which has become a major factor limiting sustainable crop production 
(Chiou and Lin, 2011; Xu et al., 2019). Pi deficiency causes changes in 
plant root system architecture modifications, such as the inhibition of 
main root elongation and increased density and length of lateral roots 
and root hairs, thereby increasing the absorption area of Pi in plants. Pi 
deficiency also induces the secretion of organic acids and acid phos-
phatases from roots, thus increasing the concentration of Pi in the 
rhizosphere (Ticconi et al., 2009; Lopez-Arredondo et al., 2014). To cope 
with Pi deficiency, plants have evolved different strategies to balance Pi 
availability, including modulating the root system architecture, thereby 
enhancing the capacity to uptake Pi and mobilize Pi from intracellular 
stores (Muller et al., 2015; Kanno et al., 2016; Balzergue et al., 2017). 

Calcium (Ca2+), as an essential intracellular secondary messenger in 
plants, plays important roles in the response to environmental stimuli 
(Poovaiah and Reddy, 1993). Extensive evidence has demonstrated that 
multiple abiotic stresses, including cold, heat, salt, drought, and light, 
can trigger the elevation of cytoplasmic Ca2+ concentrations (Kudla 
et al., 2010; Liao et al., 2017). Ca2+ signals are in turn decoded by CBLs, 
CaMs, or CDPKs, which could lead to modulations of downstream 
transcriptional and phosphorylation events (Poovaiah and Reddy, 1993; 
Luan, 2009). CBL-CIPK complexes are involved in the homeostasis of 
various ions, including K+, Na+, Mg2+, NH4

+, and NO3
− (Zhu, 2016; Kudla 

et al., 2018), but little is known about the function of the CBL-CIPK 
complex in the Pi balance of plant cells. In the present study, we have 
described a novel function of CBL1 in negatively regulating Pi homeo-
stasis under Pi deficiency, and this novel discovery opens a new avenue 
for exploring molecular mechanisms of Pi homeostasis and tolerance in 
plants. 

Given the extensive evidence that CBL-CIPK complexes act as master 
regulators in plants responding to perturbations of homeostasis for 
various ions, we initiated this work by assessing tolerance to Pi defi-
ciency of cbls mutants (cbl1, cbl2, cbl3, cbl5, cbl7, and cbl9) through a 
reverse genetic screen. Only the cbl1 mutant plants were significantly 
tolerant to Pi deficiency compared with WT plants, with much longer 
roots, decreased APase activity, and lower anthocyanin concentrations 
(Fig. 1 and Fig. 5a,b). In general, CBLs interact with their interacting 
CIPK proteins to form complexes and phosphorylate downstream sub-
strates (Luan, 2009). Unfortunately, in screening candidate CIPKs that 
may be involved in CBL1-mediated Pi deficiency signaling, no cipks 

Fig. 5. CBL1 mutation leads to decreased acid phosphatase activity and hydrogen peroxide accumulation. a Acid phosphatase (APase) activity staining in root tips of 
the WT, cbl1 mutant and CBL1 OE#3 line under MS and LP medium. Seeds were germinated on 1/2 MS agar medium for five days, then seedlings were transferred to 
1/2 MS and Pi deficient medium for another four days, then APase activity staining was performed. b Relative staining intensity of APase activity was determined by 
Image J software. c DAB staining for hydrogen peroxide (H2O2) in root tips of the WT, cbl1 mutant, and CBL1OE#3 line under MS and LP medium. Seeds were 
germinated on 1/2 MS agar medium for five days, then seedlings were transferred to 1/2 MS and Pi-deficient medium for another four days, then DAB staining was 
performed. d Relative staining intensity of DAB was determined by Image J software. The data are representative of three independent experiments. Results are 
expressed as the means ± SD. Asterisks indicate significant differences between cbl1 mutant and WT (Student’s t-test: *, P < 0.05; **, P < 0.01 and ***, P < 0.001). 
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mutants showed a tolerant phenotype in response to Pi deficiency, 
indicating the possible functional redundancy of 26 CIPKs in Arabidopsis 
(Li et al., 2009). As(V) is a chemical analog of phosphate (Pi), and it can 
disrupt Pi-dependent metabolism (Tu and Ma, 2003; Wu et al., 2011). 
The cbl1 mutant exhibited a more sensitive phenotype upon As(V) 
treatment (Fig. 1a,b), which was consistent with the antagonistic rela-
tionship between Pi and As(V) for the same transporters in the plasma 
membrane, implying that CBL1 regulates the transcription or trans-
porter activities of PHT1 genes through interaction with unknown CIPKs 
in vivo. To determine whether the tolerant phenotype of the cbl1 mutant 
was related to increased Pi uptake, we assayed the Pi content of shoots 
and roots of WT and cbl1 mutant plants under control and LP conditions, 
finding that shoot Pi content was significantly higher in cbl1 mutant 
plants even under control conditions. However, under LP conditions, 
both shoot and root Pi content were remarkably increased in cbl1 mutant 
plants, indicating that the CBL1 mutation could lead to Pi 
over-accumulation in plants (Fig. 2). The tolerant phenotype of cbl1 
mutant plants was fully rescued in the transgenic complementation lines 
under the LP treatment, indicating the CBL1 mutation was responsible 
for the tolerant phenotype under Pi deficiency (Fig. 4a-c). In contrast, 
CBL1 overexpression lines showed inhibited root growth under Pi defi-
ciency (Fig. 4d-f). 

To obtain insight into the response of CBL1 to Pi deficiency, we 
analyzed the CBL1 transcription level in the WT background, where Pi 
deficiency significantly induced the CBL1 expression (Fig. 3a). Tissue- 
specific GUS expression analysis revealed that CBL1 was highly 
expressed in leaves and vascular tissues in root mature zones and root 
tips; GUS activity was obviously higher under Pi deficiency, which was 
consistent with the mRNA expression results (Fig. 3b, Fig. S2). Consid-
ering the increased root elongation of the cbl1 mutant under Pi defi-
ciency, we suggested that mutation of CBL1 may influence Pi uptake or 
translocation in plants. The cbl1 mutant accumulated more total Pi than 
did WT plants in Pi-deficient media (Fig. 2). Furthermore, qRT-PCR 
analysis showed that not only was the expression of the main phos-
phate transporters (PHT1;1, PHT1;4, PHT1;5) remarkably increased, but 
also PSI genes such as IPS1 and RNS1 were elevated in the cbl1 mutant 
under Pi-deficient conditions (Fig. 3c). These results demonstrated that 
CBL1 may function as a negative regulator in regulating Pi deficiency 
response, and the CBL1 mutation could induce Pi accumulation in 
plants. In addition, we found the activity of APase was lower in the cbl1 
mutant than in WT seedlings (Fig. 5a,b); this may be a feedback regu-
lation result of Pi increase. 

Reactive oxygen species (ROS) act as essential signaling molecules in 
regulating root growth and development in response to Pi deficiency 
(Tsukagoshi, 2016). Thus, we performed DAB staining to observe the 
H2O2 accumulation in primary root tips. There was no difference in the 
accumulation of DAB between WT and cbl1 mutant seedlings on 1/2 MS 
medium, but DAB accumulation was obviously decreased in the cbl1 
mutant grown on Pi-deficient medium (Fig. 5c,d). 

In summary, we present evidence that the CBL1 mutation can greatly 
alleviate the severe root inhibition defects that occur under Pi defi-
ciency, thus producing a tolerant phenotype, indicating that CBL1 may 
function as a novel negative regulator of Pi homeostasis in plant cells. 
However, the underlying molecular mechanism through which CIPKs or 
target proteins of CBL1 negatively regulate the Pi deficiency signaling 
pathway remains to be demonstrated. Our future research will focus on 
the identification of CBL-interacting CIPKs or other target proteins that 
respond to Pi deficiency, exploring the important role of Ca2+ in the 
phosphate signaling pathway, in an attempt to lay the theoretical 
foundation for molecular breeding of crops with better Pi utilization 
efficiency. 

5. Conclusion 

CBL1 may function as a novel negative regulator of Pi homeostasis in 
plant cells under Pi deficiency, thus facilitating physiological adaptation 

of plants to constantly changing soils. 
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