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Abstract
Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These 
proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, 
drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found 
in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. 
The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, 
evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s 
in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related 
to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression 
levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which 
had guiding significance for further researching the precise functions of the Hsp90s.
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Introduction

Plants are continuously affected by various environmen-
tal factors, including temperature variations, salinity, and 
drought during the growth process. These stresses can lead 
to many undesirable consequences such as hindered plant 
growth and reduced crop yields. Under various adverse envi-
ronment conditions, plants have a complex set of physiologi-
cal, biochemical and molecular regulatory mechanisms to 
prevent cell damage and maintain the normal growth and 
development of plants [1]. The Hsps in plants is a family 
that is very sensitive to temperature changes [2–4], and has 
an important influence on the heat resistance of plants [5].

Hsps are widely found in animals, plants and microorgan-
isms [6], and according to the molecular weight, they can be 
divided into 6 types: smHsp (small Hsp, 15–39 kDa), Hsp60 
(50–60 kDa), Hsp70 (66–78 kDa), Hsp90 (80–90 kDa), 
Hsp100 (90–100 kDa), Hsp110 (> 100 kDa) [7]. Among 
them, Hsp90s is a highly conserved molecular chaperone. 
Normally, Hsp90s in most cells of prokaryotic and eukary-
otic account for 1–2% of all cellular proteins [8, 9]. However, 
under high temperature stress, the proportion of Hsp90s in 
total protein will rise to 4–6% [3].
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The structures of Hsp90s are very conservative and con-
sist of three regions: The N-terminal containing ATP binding 
and hydrolysis sites, the middle region (M) and the C-termi-
nal domain containing the dimerization region [10]. Accord-
ing to the source and subcellular location, the Hsp90s can 
be divided into five subgroups: Hsp90A, Hsp90B, Hsp90C, 
TRAP (TNF receptor-associated protein) and HTPG (high 
temperature protein G) [11]. Hsp90A contains no signal 
peptide and is located in the cytoplasm. The main subtypes 
include Hsp90α (inducible form) and Hsp90β (constitutive 
form), which are the result of gene duplications about 500 
million years ago [8, 12–14]. Hsp90B, Hsp90C and TRAP 
are located in the endoplasmic reticulum, chloroplast and 
mitochondria (Animalia) respectively because of containing 
signal peptides. HTPG refers to Hsp90 of prokaryotes and is 
distributed in most bacteria [11, 15]. Hsp90s are associated 
with protein folding, activation, and maturation, as well as 
the conformational transition and stability of proteins that 
related to signal transduction [16]. The signal transduction 
proteins, such as steroid hormone receptors [17], transcrip-
tion factors and protein kinases [2, 3, 18], and some sub-
strates that initiate stress signal transduction [19], many 
of which may be involved in controlling plant growth and 
development are the ‘client’ proteins of the Hsp90s [20].

Hsp90 family is a kind of protein with multiple func-
tions, which is widely involved in important processes such 
as signal transduction and cell cycle [21]. Whether in ani-
mals or plants, the Hsp90 family has extremely important 
functions. Hsp90s are abundantly expressed in the cytoplasm 
in soluble form at normal temperatures in yeast, fruit flies, 
and vertebrate families, while they accumulate rapidly in 
the nucleus under heat shock conditions [22]. In potatoes, 
Hsp90s may be related to the color of potato tuber chips 
[23]. Hsp90s play vital roles in the growth of tumor cells. 
For example, geldanamycin can specifically interact with 
the ATPase active site of Hsp90, preventing the binding of 
Hsp90 and ATP, and finally achieve the purpose of inhibit-
ing tumor [24]. Using interference technology, the expres-
sion level of Hsp90 was reduced, and it was found that the 
division rate of U937 cells was significantly reduced [25]. 
Hsp90s, as housekeeping proteins in plants, can be induced 
by various abiotic and biotic stresses [5, 26]. The expres-
sion level of UpHsp90 in Ulva pertusa is notably positively 
regulated by the change of temperature difference between 
day and night, but it was almost unaffected under long-term 
treatment with heavy metal stress [27]. Overexpression of 
rHsp90 gene which is from rice (Oryza sativa) in tobacco 
(Nicotiana tabacum) can significantly improve tobacco 
tolerance to salt and alkali [28]. In Arabidopsis thaliana, 
the overexpression of Hsp90.2 will inhibit the transcrip-
tion of HsfA2, and HsfA2 expressed under the inhibition of 
Hsp90.2 contributes to the resistance to oxidative stress [29]. 
Similarly, an Hsp90 inhibitor produced by root-peripheral 

fungi can inhibit plant growth and development, but can 
increase the resistance of Arabidopsis to high temperatures 
[30]. The Hsp90 complex in Arabidopsis directly regulates 
the activity of resistance proteins and plays a key role in 
disease resistance [31]. The resistance of tobacco leaves to 
mosaic virus increases because of the interaction of Hsp90 
with RAR1 and TIR-NB-LRR in tobacco leaves [32]. Over-
expression of TaHsp90.2 and TaHsp90.3 can enhance the 
tolerance to stripe rust in wheat (Triticum aestivum) [33]. In 
tomato (Solanum lycopersicum), Hsp90 takes a critical part 
in the resistance to Pseudomonas [34].

At present, the research on plant Hsp90s lag significantly 
behind that of animal Hsp90s, and the understanding of its 
biological function is still quite lacking. Hsp90s have been 
identified from many plants (grape (Vitis vinifera), rice, 
tomato, Brachypodium distachyon) [15, 35–37]. There are 
seven Hsp90s appeared in Arabidopsis [15]. Among them, 
AtHsp90.1–AtHsp90.4 are located in the cytoplasm [38]; 
AtHsp90.5 and AtHsp90.6 are distributed in the chloroplast 
and mitochondria, respectively [39, 40]; AtHsp90.7 is the 
endoplasmic reticulum (ER) resident protein [41]. In this 
study, Hsp90s from the complete genomic sequences of 
43 plants (covering the stages from lower plants to higher 
plants, including algae, moss, ferns, gymnosperms, angio-
sperms) were identified by using bioinformatics methods. 
Then we analyzed the phylogenetic relationships, motifs, 
gene duplications, gene characteristics and gene structure. 
In addition, we analyzed Gene Ontology (GO) annotations 
and transcriptional profiles of the Hsp90s in potato (Sola-
num tuberosum). Based on the results, the evolution of the 
Hsp90s can be better revealed, and some useful information 
can be provided for further research on potatoes.

Results and discussion

Identification of Hsp90s in 43 plant species

The Hsp90s sequences of Arabidopsis were used as a query 
to blast Hsp90s sequences from 42 other plant species. 
The 7 Hsp90s of Arabidopsis can be divided into three 
groups (Hsp90A, Hsp90B and Hsp90C) [15]. Based on 
the sequence structural feature and domain of the seven 
proteins, we analyzed candidate Hsp90s from 42 species, 
and removed incorrect and redundant sequences. In previ-
ous studies, Hsp90s have been identified in many species, 
such as grape, rice, tomato, Brachypodium distachyon [15, 
35–37]. We integrated these results, and we searched and 
identified Hsp90 family again using the methods described 
in this article. For example, we screened with the latest ver-
sion of the tomato database and found that Solyc04g081630 
and Solyc05g010670 did not belong to the Hsp90 family 
[36], but a new one Solyc04g081570 was added. Finally, 
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we found a total of 334 Hsp90s in 43 plants and named and 
classified them (Table 1, Table S1a).

Forty-three plant species had 3–18 Hsp90s (Table 1). 
Only three Hsp90s were identified in each algae known as 
Chlamydomonas reinhardtii (Cr) and Volvox carteri (Vc), 
and wheat contained 18 Hsp90s. According to the general 
trend, the Hsp90s existed in both lower plants and higher 
plants. Then we gained the genome length of 43 species 
from the NCBI (Table 1) and found that there was a cer-
tain correlation between the genome length and the number 
of Hsp90s. But the correlation was not significant, which 
should be demonstrated with more evidences. Secondly, we 
found that the numbers of amino acids in most Hsp90s were 
between 600 and 900 (Table S1a), and that of several Hsp90s 
which only appeared in eudicots and monocots plant spe-
cies were above 1000 or below 600. This showed that there 
was a relatively large difference between angiosperms and 
other plant species, which might confirm the evolution and 
functional differentiation of Hsp90 family.

Analysis of motifs and gene duplication events

In this study, we used the MEME online tool to identify the 
motifs of 334 Hsp90s (motifs = 20) (Fig. 1, Table S2). The 
number of motifs was between 10 and 20. Most proteins 
(more than 300 proteins) contained 17–20 motifs which 
had a basically same motif composition, and a few proteins 
just displayed 14, 15 or 16 motifs (Fig. 1). Additionally, 
PhHsp90.12 and BrHsp90.3 were the only protein with 10 
and 13 motifs in Physcomitrella patens and Brassica rapa, 
respectively (Table S1a). From this, the motifs of Hsp90 
family members are conserved, and these conserved motifs 
are involved in function and/or structure of the active pro-
teins [42].

Gene duplication can explain the gene evolution process, 
and significantly affects the origin and evolution of species 
[43, 44]. In order to further understand the evolutionary 
relationship of Hsp90s, we analyzed the tandem and seg-
mental duplications in 43 plant species based on the avail-
able information (In fact, due to the incomplete information 
of gene location and PGDD website, we can’t identify the 
all gene duplication events) (Table 1, Table S1a, b). The 
gene duplication events were identified in 29 species. The 
tandem duplications were obviously less than segmental 
duplications. Tandem duplications didn’t exist in soybean 
(Glycine max), but we found ten segmental duplications, 
which was the highest number in all species. Physcomitrella 
patens contained the most tandem duplication events, three 
pairs. With the evolution of species, the numbers of seg-
mental duplications were significantly increased in most 
Angiosperms (especially in soybean), while the numbers of 
tandem duplications which were lower than that in P. patens 
were decreased in other higher plants (Fig. 2).

It is necessary and useful to calculating the ratio of 
non-synonymous nucleotides to synonymous nucleotide 
substitutions (Ka/Ks) for us to estimate selective pressure 
[45, 46], which is commonly used to analyze the molecular 
evolution rate [47]. In total, 75 gene pairs were analyzed 
using DnaSP6. Ka/Ks ratio values were much below 1.0 in 
all gene pairs (Table S1b), which indicated that these gene 
pairs were subject to purification selection [44]. The increase 
in the amount of Hsp90s may be related to the emergence of 
numerous duplication events which promote the evolution 
and differentiation of gene functions in plants, and the ratio 
of Ka/Ks can partially explain the evolutionary patterns of 
Hsp90s [43].

Analysis of the phylogenetic tree

The 334 Hsp90s from 43 plant species were used to con-
struct the phylogenetic tree (Fig. 3). The 334 proteins can be 
roughly divided into three groups, which was consistent with 
the results of CDD analysis (Table 1). The Hsp90A family 
had more members than other groups, with more than 170 
proteins. The Hsp90B family contained the fewest Hsp90 
protein members, but there were also differences in details. 
If these proteins were classified by CDD according to the 
conserved domain of Hsp90s in Arabidopsis, CpHsp90.4, 
OsHsp90.2, PaHsp90.1 and TaHsp90.14 should belong to 
Hsp90B, Hsp90C, Hsp90B and Hsp90C subfamily, respec-
tively. But in phylogenetic tree, CpHsp90.4, OsHsp90.2, 
PaHsp90.1 and TaHsp90.14 were distributed in Hsp90C, 
Hsp90B, Hsp90A and Hsp90B group, respectively. In addi-
tion, in algae, Chlamydomonas reinhardtii and Volvox cart-
eri all didn’t contain the proteins of Hsp90B subfamily. The 
classification results of Hsp90s of rice and Chlamydomonas 
reinhardtii were different from the previous research [15], 
which may be due to different classification criteria, or dif-
ferent genomic databases used.

Phylogenetic trees are a mature method for examining 
the structure and function of protein families and inferring 
functional relationships [52]. Arabidopsis is one of the most 
common model plants used to study the structure and func-
tion of the proteins [15]. We specifically marked the Hsp90s 
of Arabidopsis and potato that is our main research species. 
The function of Hsp90s in potato could be predicted based 
on functional performance of that in Arabidopsis. In Arabi-
dopsis, increased expression level of AtHsp90.3 will cause a 
decrease in plant tolerance to Cd, a reduction in germination 
rate and in root length, an increase in MDA content, and 
a decrease in the activity and content of various enzymes 
(SOD, POD, CAT, etc.). The results show that Hsp90s 
play vital roles in plant tolerance to heavy metal stress and 
cellular responses [53]. However, the resistance to oxida-
tive stress and the sensitivity to salt and drought stresses 
will decreased and increased, respectively, because of the 
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Table 1  The heat shock protein 90 (Hsp90) family members identified in 43 sequenced plant genomes

*The gene mapping information is unclear, it is impossible to determine the tandem duplication pairs; or segmental duplication information can-
not obtained from PGDD
#The data are from NCBI (www.ncbi.nlm.nih.gov/genom e/)

Lineage Organism (Abbr.) Genome total 
length (Mb)#

Numbers of
Hsp90s

Numbers of motifs Tandem duplication
(pairs)

Segmental dupli-
cation (pairs)

Algae
Chlamydomonas reinhardtii (Cr) 120.405 3 15, 17, 19 0 0
Volvox carteri (Vc) 137.684 3 16–17, 19 0 Not identified*

Mosses
Marchantia polymorpha (Mp) 225.761 5 17–20 0 Not identified
Physcomitrella patens (Ph) 472.081 12 10, 16, 18, 20 3 1

Ferns
Selaginella moellendorffii (Sm) 212.315 6 17–18, 20 0 1

Gymnosperms
Picea abies (Pa) 11961.4 4 17, 19–20 0 Not identified

Angiosperms
Amborellaceae Amborella trichopoda (Ar) 706.495 4 19, 20 0 0
Eudicots
Actinidiaceae Actinidia chinensis (Ah) 653.926 13 17–20 0 5
Asteraceae Helianthus annuus (Ha) 3027.84 9 17–20 0 Not identified

Lactuca sativa (Ls) 2384.19 7 18–20 1 Not identified
Brassicaceae Arabidopsis thaliana (At) 119.669 7 18, 20 2 0

Brassica oleracea (Bo) 488.954 10 17–20 1 0
Brassica rapa (Br) 401.927 9 13, 17–20 0 5
Capsella rubella (Cb) 133.064 8 16–20 1 0

Caricaceae Carica papaya (Cp) 370.419 5 16–17, 20 0 0
Chenopodiaceae Beta vulgaris (Bv) 566.55 7 17–20 1 0
Cucurbitaceae Citrullus lanatus (Cl) 365.45 5 18–20 1 0

Cucumis sativus (Cs) 226.641 4 18, 20 0 0
Euphorbiaceae Ricinus communis (Rc) 350.622 5 18–20 0 1
Leguminosae Glycine max (Gm) 979.046 13 16–20 0 10

Medicago truncatula (Mt) 412.924 7 18–20 1 0
Phaseolus vulgaris (Pv) 521.077 6 18, 20 1 0

Malvaceae Eucalyptus grandis (Eg) 691.43 10 14–15, 17–20 0 3
Gossypium raimondii (Gr) 761.565 12 17–20 1 4
Theobroma cacao (Tc) 324.88 6 18–20 0 1

Nelumbonaceae Nelumbo nucifera (Nn) 804.648 11 18–20 Not identified 4
Rosaceae Malus domestica (Md) 703.358 10 17–20 0 Not identified

Prunus persica (Pp) 227.569 6 18–20 0 0
Pyrus bretschneideri (Pb) 508.551 9 18–20 Not identified 6

Rutaceae Citrus sinensis (Ci) 327.83 6 18–20 0 0
Salicaceae Populus trichocarpa (Pt) 434.29 10 17, 19–20 0 4
Solanaceae Capsicum annuum (Cu) 2935.88 7 16, 18–20 0 1

Solanum lycopersicum (Sl) 828.349 6 18–20 0 2
Solanum tuberosum (St) 705.934 7 17–20 0 2

Vitaceae Vitis vinifera (Vv) 486.197 5 14–15, 18–19 0 0
Monocots
Arecaceae Elaeis guineensis (El) 1535.18 13 17–20 2 0
Musaceae Musa acuminate (Ma) 472.231 11 14–19 0 5
Orchidaceae Phalaenopsis equestris (Pe) 1064.2 6 18, 20 Not identified 0
Poaceae Brachypodium distachyon (Bd) 271.299 8 18, 20 2 1

Hordeum vulgare (Hv) 1779.49 5 18–20 0 Not identified
Oryza sativa (Os) 374.423 8 18–20 1 2
Triticum aestivum (Ta) 14547.3 18 14, 17–20 1 Not identified
Zea mays (Zm) 2135.08 8 17–18, 20 0 4

http://www.ncbi.nlm.nih.gov/genome/
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overexpression of AtHSP90.2, AtHSP90.5 and AtHSP90.7 
[26, 54]. In addition, Hsp90s in Arabidopsis regulates the 
activity of resistance proteins and plays a key role in disease 
resistance [31, 32].

Moreover, OsHsp90 from rice enhances thermotolerance 
of E. coli (Escherichia coli) it functions as a chaperone, 
binding to a subset of substrates, and maintained E. coli 
growth well under high temperature stress [55]. ZmHsp90-1 
may be involved in resistance to heat, high salt, ABA, cold 
and drought stress in maize (Zea mays) [56], and Hsp90s 
also play important roles in disease resistance of wheat 
and rice [28, 33]. In soybean, GmHsp90A2, GmHsp90A4, 
GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 can reduce 
the damage of abiotic stress and may affect the synthesis 
and response system of proline [57]. Therefore, we also can 
speculate on the function of the Hsp90s in various species 
based on the existing results that can provide a clear idea and 
direction for the research.

The features and GO annotations analysis 
of StHsp90s

In order to better understand the sequence characteristics 
of the Hsp90 family, we performed sequence alignments 
on the Hsp90s of potato and Arabidopsis (Fig. 3), indicat-
ing that these sequences have significant sequence homol-
ogy. According to previous studies, we divided the protein 
sequence into seven regions (conserved regions I, II, and 
III and variable regions A, B, C and D) [15, 48]. Among 
them, the variable regions reflect the sequence variation. The 
conserved region I contained histidine kinase-like ATPases 
sequences (HATPase-c family conserved signature sequence 
of Hsp90s), and Hsp90 family signature motif ’’Yx-N/Q/H/
D-K/H/R-D/E-I/V/A-F-L/M-R-E/D’’ [37, 58]. In the con-
served region III, we found that all members of the Hsp90A 
family in the cytoplasm had the C-terminal pentapeptide 
"MEEVD", which is a diagnostic sequence motif, and rep-
resents the functionality and characteristics of cytoplasmic 
Hsp90s in animals and plants [59, 60]. The C-terminus of 
the Hsp90B family members which were located on the ER 
had "KDEL" motifs, which marks proteins for ER retention 
[61]. The variable region B was rich in lysine (K) and glu-
tamic acid (E). The functionally important residues experi-
mentally identified were distributed in conserved regions I 
and II, and variable region B (Fig. 3).

To better understand the biological processes affected 
by Hsp90s, we selected potato Hsp90s for GO analysis 

Fig. 1  Evolutionary relationships (left), and motifs prediction (right) 
of Hsp90s in 43 plant species. The evolutionary history was inferred 
using the Neighbor-Joining (N-J) method in MEGA7. Bootstrap val-
ues of 1000 replications were executed. The motifs, numbered 1–20, 
are displayed in different colored boxes

▸
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using the NCBI database [43] (Fig. 4, Table S3). In terms 
of molecular functions and biological processes, the 
seven genes all played identical functions. These genes 
not only participated in more 20 molecular functions (such 
as protein binding, ATP binding), but also were involved 
in more 50 biological processes, including response to 
heat, response to stimulus, biological regulation, cellular 
process, etc. (Fig. 4a, b). In addition, predictions of the 
cellular components of the genes showed that, StHsp90s 
were involved in the component development of the intra-
cellular, organelle, membrane-bounded organelle, and 
so on (Fig. 4c). This indicated that the StHsp90s played 

important roles in cell composition, potato growth and 
development.

RNA‑sequence data analysis of StHsp90s

We analyzed the data that was related to the expression 
patterns of the 7 Hsp90s and was from PGSC website in 
different development stages with varied stresses in potato 
[62]. We processed the RNA-seq database and generated 
a heatmap (Figs. 5, 6). It can be seen from Fig. 5 that the 
expression levels of StHsp90s in all stages of potato devel-
opment were different. StHsp90.3, StHsp90.4, StHsp90.5, 

Fig. 2  Phylogenetic tree of Hsp90s. The unroot tree contains 334 pro-
teins from 43 plant species. The protein distribution can easily divide 
into three main parts which were showed by different colors, respec-
tively. Some Hsp90s are marked with different shapes. White star 

indicates Arabidopsis, white tick indicates potato (Solanum tubero-
sum), white triangle indicates the genes that differ from CDD clas-
sification
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StHsp90.6 and StHsp90.7 clearly expressed in all tissues. 
StHsp90.1 and StHsp90.2 were significantly expressed in 
most tissues. But in stamen, the expression of StHsp90.1 
was very low, and StHsp90.2 was hardly expressed in flower 
and tuber (mature).

The plants were treated with ten different conditions, 
including phytohormone treatments (6-benzylaminopu-
rine, BAP; indole-3-acetic acid, IAA; abscisic acid, ABA; 
gibberellic acid, GA3); abiotic stress (heat, drought (man-
nitol), and salinity (NaCl)); and biotic stress (pathogen; 

dl-β-amino-n-butyric acid, BABA; acibenzolar-S-methyl, 
BTH) [62, 63]. Under ten different treatments, most genes 
showed a down-regulated expression or little change 
(Fig. 6). Under phytohormone treatments, especially under 
BAP treatment, the expression levels of all genes was sig-
nificantly decreased. But under the treatments of ABA and 
GA3, the expression of StHsp90.6 increased obviously. 
Under biotic stresses, BABA treatment induced increased 
expression of StHsp90.2 and StHsp90.3, and BTH treat-
ment resulted in up-regulated expression of StHsp90.2, 

Fig. 3  Alignment of the Hsp90s sequences of potato and Arabidop-
sis thaliana. Identical or similar amino acids were colored blue or 
pink, respectively. Gaps were indicated with ".", the last residue was 
assigned a number at the end of each line. The rectangle drawn by 
dashed lines, close the N-terminal region, showed the Hsps90 fam-
ily signature motif ’’Yx-N/Q/H/D-K/H/R-D/E-I/V/A-F-L/M-R-E/D’’. 
The conserved and functional domains are marked by: " = " for HAT-
Pase-c family; " ~ " for Hsp90 protein signature sequences; "*" for 

Hsp90 protein functional domain; "#" for fourhelical cytokine [15]. 
The red numbers above the alignment showed the functionally impor-
tant residues: 1 (glutamic acid, E) for ATP hydrolysis; 2 (aspartic 
acid, D) for ATP binding [48]; 3, 5, 6, 7 and 8 (glycine, G) for both 
GA and p23 binding; 4 (lysine, K) for GA binding [49]; 9 (serine, S) 
for phosphorylation by casein kinase II [50]; 10 (phenylalanine, F) for 
interdomain interaction; 11 (arginine, R) and 12 (glutamine, Q) for 
ATPase activity [51]. (Color figure online)
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StHsp90.3, StHsp90.4 and StHsp90.7. When the plants were 
treated with abiotic stresses, StHsp90.1 and StHsp90.2 were 
up-regulated expressed under salinity and drought stresses. 
The expression of StHsp90.3 was increased under salin-
ity stresses, and StHsp90.5 and StHsp90.6 were increased 
slightly under heat, salinity and drought stresses.

There are many studies confirming that the Hsp90 fam-
ily can improve the stress resistance of plants [5, 26, 30–33, 
56]. But in potatoes, there is still little research on the Hsp90 

family. And in the ten treatments, there was no cold stress. 
Therefore, we analyzed the expression patterns of the seven 
genes under cold (4 °C) and heat (35 °C) stresses using the 
tetraploid cultivar “Diseree”.

Fig. 4  The GO annotation information of whole Hsps. The X-axis indicates the protein numbers, and the Y-axis indicates the types of GO terms. 
Different types of gene annotation are shown in different colors

Fig. 5  The heatmap based 
on the RNA-seq database in 
14 different tissues of potato. 
The heatmap showed Hsp90s 
expressions across 14 tissues 
throughout the entire potato 
life cycle, including flower, 
leaf, stolon, petiole, root, young 
tuber, mature tuber, shoot apex, 
tuber peel, tuber cortex, tuber 
sprout, tuber pith, and stamen. 
In the heat map, high expres-
sion is in red and low expres-
sion is in black. The data used 
in the Figure was the base-10 
logarithm of raw data from the 
PGSC database
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Hsp90s expression profiles in response 
to temperature variations

To demonstrate the change of Hsp90s in different tissues 
(leaf, stem, and root) in potato under low-temperature 
(4 °C) and high-temperature (35 °C) treatments, qRT-PCR 
analysis was used to conduct expression analysis (Fig. 7, 
Table S5). We mainly focused on the Hsp90s of potato.

In leaves (Fig. 7a), under low temperature stress, the 
expression levels of StHsp90.1, StHsp90.3, StHsp90.5, 
and StHsp90.7 did not change much, and StHsp90.2, 
StHsp90.4, and StHsp90.6 were up-regulated expressed. 
The expression levels of all StHsp90s were increased 
under high temperature condition, especially StHsp90.2, 
StHsp90.4, StHsp90.6, and StHsp90.7 were significantly 
up-regulated expressed. In stems (Fig. 7b), the transcript 
levels of StHsp90.4 and StHsp90.7 were slightly increased, 
while the expression of other genes almost unchanged 
at 4 °C. Under high temperature condition, four genes 
(StHsp90.2, StHsp90.4, StHsp90.6, and StHsp90.7) were 
up-regulated expressed, and the expression levels of 
StHsp90.2 and StHsp90.4 were notably increased. How-
ever, StHsp90.5 showed a down-regulation expression 
at 4 °C and 35 °C. In roots (Fig. 7c), the expression of 
StHsp90.2 was increased significantly at high temperature, 

Fig. 6  Expression profiles of 7 Hsp90s in potato based on the RNA-
seq database under 10 different treatments. Abiotic stress, biotic 
stress, and phytohormone treatment data and control data were 
obtained from the PGSC database. Transcripts were measured via 
RNA-Seq technology. The data used in the Figure = log2 (experimen-
tal value/control value). In the heat map, upregulated expression is 
shown in red and downregulated expression is shown in green. (Color 
figure online)

Fig. 7  Expression of 7 Hsp90s in potato leaves, stems, and roots at 
35 °C (heat) and 4 °C (cold). a Leaf, b Stem, c Root. X-axes showed 
7 representative Hsp90s, and the y-axes showed scales of relative 
expression levels. The Ef1a gene was used as a reference transcript. 
Leaf, stem, and root tissues were sampled from the same parts of con-

trol and experimental plants. The quantitative data were measured by 
taking three biological replicates and two technical replicates, and the 
relative expression level of each gene was calculated using the  2−ΔΔCt 
method
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and the expression of StHsp90.4 was increased signifi-
cantly at low temperature. Interestingly, the expression 
levels of StHsp90.2 and StHsp90.4 were extremely sig-
nificantly increased in leaves, stems, or roots at 4 °C or 
35 °C, which indicated that StHsp90.2 and StHsp90.4, 
which were sensitive to the temperatures, is worthy of 
further study.

Studies have shown that Hsp90s will not only be induced 
under high temperature, but also respond to other abiotic 
stresses. Under high temperature conditions, Hsp90 can help 
the substrate protein fold correctly, thereby playing a key role 
in protecting cells from thermal damage, and respond to cold 
and heat stresses with a temperature-dependent expression 
and exposure time effect [64, 65]. The Hsp90s in soybean 
all show high transcription levels in the leaves, and can be 
strongly induced under high temperature, osmotic pressure, 
and salt stress, but cannot be induced under cold stress [57]. 
In Arabidopsis thaliana, Hsp81-1, Hsp81-2 and Hsp81-3 are 
HSP90-family members. Under high temperature (35 °C), 
HSP81-1 is tissue-special expressed in large quantities, and 
under ABA, GA3, kinetin, IAA, NaCl or mannitol stresses, 
the transcripts levels of HSP81-2 and -3 are significantly 
increased [66]. In Brassica napus, Hsp90s play important 
roles under low temperature stress [67]. In Porphyra yezoen-
sis Ueda (Bangiales, Rhodophyta), PyHsp90 is essential for 
maintaining the protein configuration under temperature and 
salinity stress, and is necessary under drought stress [68]. In 
Lilium formolongi, LfHsp90 can be induced by high and low 
temperatures, and by drought and salt stresses, indicating 
their likely association with tolerance to these stress condi-
tions [69]. But so far, the response of Hsp90s to temperature 
has not been studied in potatoes. This paper analyzed the 
gene expression pattern of Hsp90 family in potatoes at 4 °C 
and 35 °C, and provided a greater theoretical basis and data 
in plants to further explore the heat and cold tolerance of 
plants.

Materials and methods

Identifcation of Hsp90s in various species

The genes, proteins, and coding sequences of 42 species 
were download from the Phytozome (https ://phyto zome.
jgi.doe.gov/pz/porta l.html), the PGSC (https ://solan aceae 
.plant biolo gy.msu.edu/pgsc_downl oad.shtml ), and the NCBI 
(https ://www.ncbi.nlm.nih.gov) database. Seven Arabidop-
sis Hsp90 protein sequences that were obtained from the 
TAIR database (https ://www.Arabi dopsi s.org/) were used as 
queries to perform a protein search against the database of 
42 species proteins with a strict E value (< 1e−10) require-
ment by using Blast 2.6.0 [70]. All candidate Hsp90 protein 

sequences were screened by using the Conserved Domain 
Database (CDD) (https ://www.ncbi.nlm.nih.gov/cdd/), and 
were aligned using Molecular Evolutionary Genetics Analy-
sis (MEGA7) software.

Sequence analysis of Hsp90s/proteins

The information of the length of protein sequences and chro-
mosome location was obtained from the Phytozome, the 
PGSC, the NCBI, and other database (Table S1). Multiple 
Em for Motif Elicitation (MEME; https ://meme-suite .org/
tools /meme) was used to calculate the motifs of the protein 
sequences, with the parameter of the number of motifs = 20.

Construction of the phylogenetic tree and gene 
duplication analyses

Phylogenetic analysis of the Hsp90 family from 43 species 
was constructed using MEGA7 software. Phylogenetic trees 
were produced using the Neighbor-Joining (NJ) method 
with the parameters of the Jones–Taylor–Thornton (JTT) 
model and 1000 replicates for bootstrap analysis [71]. The 
EvolView online tool (https ://www.evolg enius .info/evolv 
iew/#login ) was employed to draw and manage the phylo-
genetic trees.

Gene tandem duplication events of Hsp90s were analyzed 
following the methods of Gu et al. (2002) [72], the major cri-
teria was that the length of alignable sequence covers > 75% 
of longer gene, and similarity of aligned regions > 75%. Two 
genes were regarded as tandem pairs if they were located 
on the same chromosome and were separated by no more 
than ten unrelated genes [73]. The segmental duplication 
pairs were analyzed by using the Plant Genome Duplication 
Database (PGDD; https ://chibb a.agtec .uga.edu/dupli catio n). 
Ka and Ks values were calculated by DnaSP software.

GO annotation and expression pattern analysis

Blast2GO software was used to analyze the gene ontol-
ogy (GO) [74]. The full-length amino acid sequences were 
uploaded into the program, and the NCBI database was 
chosen as the reference to analyze the molecular function, 
cellular components, and biological processes.

The expression data for the responses of Hsp90s to dif-
ferent stresses was obtained from the PGSC database, and 
the transcript abundance was represented by using FPKM 
(fragments per kilobase million) values [75].

Plant materials and growth conditions

Potato (Solanum tuberosum L.) tetraploid cultivar “Dise-
ree” was used in this study. Potato plantlets were cultured in 
MS medium with 10 g/L agar and 20 g/L sucrose (pH 5.8) 

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
https://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
https://www.ncbi.nlm.nih.gov
https://www.Arabidopsis.org/
https://www.ncbi.nlm.nih.gov/cdd/
https://meme-suite.org/tools/meme
https://meme-suite.org/tools/meme
https://www.evolgenius.info/evolview/#login
https://www.evolgenius.info/evolview/#login
https://chibba.agtec.uga.edu/duplication
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and were kept under 25 ± 1 °C under 10,000 lx in light for 
16 h and 20 ± 1 °C under 0 lx for 8 h. After two months, we 
selected seedlings of the same size for experimentation and 
divided them into three groups. The first was subjected to 
temperatures of 35 °C for 24 h, the second was subjected to 
temperatures of 4 °C for 24 h and the third was kept at nor-
mal condition as the control. We subsequently sampled the 
root, stem and leaf tissues from the same parts of the control 
plants and experimental plants with a weight of 100 mg. All 
of the samples were flash frozen in liquid nitrogen and were 
stored at − 80 °C prior to utilization.

RNA extraction and real‑time qRT–PCR analysis 
of Hsp90 gene expression

The RNA simple Total RNA Kit (Code No. RP3301, 
BioTeke, Beijing, China) was used to extract RNA. The 
Elongation factor 1-a (Ef1a) gene was chosen as the ref-
erence gene [76]. Specifc primers were designed using 
Primer Premier 5 software. First-strand cDNAs were syn-
thesized from 1 μg RNA with the PrimeScript™ RT reagent 
Kit (Code No. RR047A, TaKaRa, Dalian, China) in 20 μL 
reaction volume, including gDNA Eraser. Real-time PCR 
was set up on the basis of a 2 × Plus SYBR real-time PCR 
mixture (Code No. PR7702, BioTeke, Beijing, China) and 
was performed on a QuantStudio™ 7 Flex Real-time PCR 
System (Applied Biosystems Inc., U.S.A.) in a 10 μL reac-
tion volume. The relative expression level of each gene was 
calculated using the  2−ΔΔCt method [77].

Conclusions

We identified 334 Hsp90s from 43 plant species, which 
could be divided into three groups based on CDD results and 
phylogenetic tree. We analyzed the gene mapping, motifs, 
gene duplication events, phylogenetic tree, GO annotations 
and the expression data from PGSC website. These results 
are important for understanding the properties and functions 
of Hsp90s, and also provide the basis for studying the evolu-
tionary relationship of Hsp90s in plants. Although the motif 
composition of Hsp90s was conservative, there were also 
quantitative changes in several other proteins. In addition, 
in angiosperms, there were some Hsp90s with too large or 
too small number of amino acids, which showed that Hsp90s 
evolved with the evolution of plants. The view could be also 
confirmed through the notable increase in the number of 
gene segmental duplication events. Our analysis also showed 
that all 7 Hsp90s in leaves, stems, and roots of potato were 
related to temperature variations. Especially StHsp90.2 and 
StHsp90.4, the expression levels in leaves, stems, or roots 
were upregulated significantly under high or low tempera-
ture conditions, which suggested that the two genes may 

have important effects on heat- or cold-resistance in potato. 
In general, our findings enhance the knowledge about the 
evolutionary relationship and lay a foundation for further 
functional analysis of the Hsp90s in potato. In subsequent 
researches, we will try to study the functions and roles of 
Hsp90s in biological processes that affect crop resistance, 
and use molecular biology techniques to improve potato 
response to certain stresses.
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