现在的位置: 旱区作物逆境生物学国家重点实验室» 发表论文»

SNP-Based Pool Genotyping and Haplotype Analysis Accelerate Fine‑Mapping of the Wheat Genomic Region Containing Stripe Rust Resistance Gene Yr26

Jianhui Wu, Qingdong Zeng, Qilin Wang, Shengjie Liu, Shizhou Yu, Jingmei Mu, Shuo Huang, Hanan Sela, Assaf Distelfeld, Lili Huang, Dejun Han, Zhensheng Kang.

Theoretical and Applied Genetics

DOI: 10.1007/s00122-018-3092-8

 

 

Abstract: Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (> 30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.