Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria

Zhifeng Wena, b, c, Liping Yaod, Stacy D. Singere, Hanif Muhammada, b, Zhi Lia, b, **, Xiping Wanga, b, *a

* State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
** Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
b College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
c Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
d Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada

Abstract

Plants use resistance (R) proteins to detect pathogen effector proteins and activate their innate immune response against the pathogen. The majority of these proteins contain an NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain along with a leucine-rich repeat (LRR), and some also bear a toll interleukin 1 receptor (TIR) domain. In this study, we characterized a gene encoding a TIR-NB-ARC-LRR R protein (VpTNL1) (GenBank accession number KX649890) from wild Chinese grapevine Vitis pseudoreticulata accession “Baihe-35-1”, which was identified previously from a transcriptomic analysis of leaves inoculated with powdery mildew (PM; Erysiphe necator (Schw.). The VpTNL1 transcript was found to be highly induced in V. pseudoreticulata following inoculation with E. necator, as well as treatment with salicylic acid (SA). Sequence analysis demonstrated that the deduced amino acid sequence contained a TIR domain at the N-terminus, along with an NB-ARC and four LRRs domains within the C-terminus. Constitutive expression of VpTNL1 in Arabidopsis thaliana resulted in either a wild-type or dwarf phenotype. Intriguingly, the phenotypically normal transgenic lines displayed enhanced resistance to Arabidopsis PM, Golovinomyces cichoracearum, as well as to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Similarly, constitutive expression of VpTNL1 in Nicotiana tabacum was found to confer enhanced resistance to tobacco PM, Erysiphe cichoraeaeum DC. Subsequent isolation of the VpTNL1 promoter and deletion analysis indicated that TC-rich repeats and TCA elements likely play an important role in its response to E. necator and SA treatment, respectively. Taken together, these results indicate that VpTNL1 contributes to PM resistance in grapevine and provide an interesting gene target for the future amelioration of grape via breeding and/or biotechnology.

© 2017 Elsevier Masson SAS. All rights reserved.

Abbreviations: PRRs, Pattern-recognition receptors; MAMPs, Microbe-associated molecular patterns; PTI, Pattern-triggered immunity; ETI, Effector-triggered immunity; PR1, Pathogenesis-related 1; HR, Hypersensitive response; LRR, Leucine-rich repeat; NB, Nucleotide binding; CC, Coiled-coil; PM, Powdery mildew; SA, Salicylic acid; BA, Benzylaminopurine; IBA, Indole-3-butyric acid; NBT, Nitroblue tetrazolium; hpi, Hours post-inoculation; dpi, Days post-inoculation.

Corresponding author. College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
E-mail addresses: zhifengwen@126.com (Z. Wen), lpy106080@163.com (L. Yao), stacysinger@hotmail.com (S.D. Singer), mdhanif1716@yahoo.com (H. Muhammad), lizhi@nwsuaf.edu.cn (Z. Li), wangxiping@nwsuaf.edu.cn (X. Wang).
1. Introduction

Plants have evolved two main lines of defense against pathogen infection, the first of which occurs when pattern-recognition receptors (PRRs) detect microbe-associated molecular patterns (MAMPs) (Boller and Felix, 2009) and trigger a downstream defense response known as pattern-triggered immunity (PTI) (Mantelin et al., 2011; Peng and Kaloshian, 2014). To suppress PTI, pathogens have developed specialized secretion systems that deliver effector molecules into the plant cell. In order to overcome these effector molecules, plants have co-evolved to produce resistance (R) proteins, which directly or indirectly recognize pathogen effectors and activate a second line of defense known as effector-triggered immunity (ETI) (Mantelin et al., 2011). ETI typically leads to an active defense response, including the production of pathogenesis-related 1 (PR1) protein, reactive oxygen species (ROS), phytoalexins and hypersensitive response (HR) (Torres et al., 2015). Furthermore, several conserved motifs have nucleotide-binding (NB) fold and ARC1, -2 and -3 subdomains (Wen et al., 2015), is composed of four subdomains: the MHD motifs, and exhibit sequence similarity to the cytoplasmic domains underlying R protein/pathogen effector interactions and thus aid in the development of novel treatments to control and prevent pathogen invasion.

The major class of R proteins are structurally conserved with a nucleotide binding (NB) domain and a C-terminal leucine-rich repeat (LRR) domain, known as the NB-LRR protein family (Ooijen et al., 2008), or NB-ARC (for NB adaptor shared by APAF-1, R proteins, and CED-4)-LRR proteins. The three-dimensional structure of these proteins has revealed that the NB-ARC domain, which functions as a molecular switch to regulate signaling pathways through conformational changes (Riedl et al., 2005; Takken et al., 2006; Wen et al., 2015), is composed of four subdomains: the nucleotide-binding (NB) fold and ARC1, -2 and -3 subdomains (Ooijen et al., 2008). Furthermore, several conserved motifs have been identified within this domain, including hGCREX, Walker A, Walker B, RNBS-A, -B, -C, and -D, GLPL, and MHD motifs (Takken et al., 2006; Ooijen et al., 2008). The LRR domain, on the other hand, is characterized by a LxxLxLxxN/CxL motif (where x can be any amino acid and L denotes valine, isoleucine or phenylalanine) (Kobe and Deisenhofer, 1994; Kajava, 1998) and functions to specifically recognize particular pathogen effectors, providing maintenance in a signaling-competent yet auto-inhibited state (Fenykier et al., 2015).

NB-ARC-LRR proteins can be divided into two classes based on their N-terminal domain, which can comprise either a Toll/interleukin-1 receptor (TIR) domain (TIR-NB-ARC-LRR; TNL family) or a coiled-coil (CC) domain (CC-NB-LRR; CNL family) (Dangl and Jones, 2001; Lukasik-Shreepathy et al., 2012). TIR domains consist of approximately 200 residues bearing three conserved motifs, and exhibit sequence similarity to the cytoplasmic domains of the Drosophila Toll receptor and the interleukin-1 receptor (IL-1R) (Slack et al., 2000; jebanathirajaha et al., 2002). This domain activates a downstream signal cascade, leading to HR (Ghelder and Esnmenjaud, 2016). Indeed, it has been found that the expression of TIR domains from certain R proteins, such as L6 and RPS4, lead to cell death (Takken and Gouverse, 2012). Similarly, CC domains consist of two or more α-helices that wind around each other to form a super-coil (Gruber et al., 2006), and can function as a recognition domain (Raidan et al., 2008) that like TIR domains, can then mediate a downstream signaling response (Collier and Moffett, 2011; Maekawa et al., 2008).

The identification of candidate genes encoding NB-ARC-LRR proteins that confer resistance to E. necator is a crucial step towards a better understanding of the mechanism underlying grapevine-E. necator (powdery mildew; PM) interactions and the development of novel sources of resistance to PM. Since grapevine (Vitis vinifera L.) is one of the most widely grown and economically important fruit crops in the world and PM caused by the obligate biotrophic fungus E. necator (Schw.) is the most destructive disease of grapevine, reducing yield, vine growth and fruit quality (Devi et al., 2013), it is of paramount importance to generate new strategies to mitigate future losses. China is one of the major origins of Vitis species, and among the wild species found in this country, a number have been shown to possess high levels of disease resistance to this pathogen (Wang et al., 1995). Hence, Chinese wild Vitis species have the potential to provide an incredible resource for furthering our understanding of molecular grapevine-E. necator interactions (Gao et al., 2014).

Characterization of several genes containing NB-ARC-LRR domains and the putative molecular mechanisms behind their ability to provide resistance to PM have been described in grapevine previously (Wan et al., 2012). For example, the Run1 gene from the wild grape species, Muscadina rotundifolia, has been linked to PM resistance, and has been introgressed into V. vinifera (Donald et al., 2002; Barker et al., 2005). This gene and its paralog MrRPV1 were subsequently transformed into a susceptible V. vinifera grape cultivar, respectively, and in both cases they imparted strong resistance to both PM and downy mildew (Feechan et al., 2012). Likewise, the dominant REN1 locus from V. vinifera ‘Kishmish vatkan’ has been proposed to provide resistance to PM in this accession (Hoffmann et al., 2008; Coleman et al., 2009).

The Chinese wild grapevine species Vitis pseudoreticulata “Baihe-35-1” has been shown to exhibit a relatively high level of resistance to multiple fungi, and particularly E. necator (Wang et al., 1995; Yu et al., 2011; 2013a,b). However, as of yet, no studies have been carried out in which NB-ARC-LRR genes related to PM resistance have been identified and functionally characterized in any Chinese wild Vitis species. Therefore, to provide a better understanding of the resistance mechanisms involved in defense against E. necator, we previously utilized RNA-Seq to investigate the global transcriptional response of V. pseudoreticulata “Baihe-35-1” following inoculation with E. necator (Weng et al., 2014). Among the genes that were transcriptionally induced by the pathogen, one was predicted to encode a TIR-NB-ARC-LRR domain protein. In this study, we isolated the full-length coding region of this gene, which we designated VpTNL1, and carried out a functional characterization via its constitutive heterologous expression in Arabidopsis thaliana and Nicotiana tabacum. Furthermore, isolation of the VpTNL1 promoter and subsequent deletion analyses were conducted in an effort to elucidate the mechanism behind its responsiveness to E. necator infection and salicylic acid (SA) treatment. Our results indicate that VpTNL1 contributes to PM disease resistance in Chinese wild V. pseudoreticulata, and provide an additional gene target for the future development of grape displaying improved disease resistance.

2. Materials and method

2.1. Plant material and growth conditions

Chinese wild V. pseudoreticulata accession “Baihe-35-1” and V. vinifera cv. “Red Globe” were maintained in the grape germplasm resources orchard of Northwest A&F University, Yangling, Shaanxi, P. R. China. Grape tissues (young roots, stems, leaves, tendrils, flowers at the fully open stage, and fruits at 33 days post-anthesis) were harvested in the field and immediately frozen in liquid nitrogen. Arabidopsis Col-0 seedlings were grown at 21 °C day and 20 °C day and night temperatures, respectively, with 50% relative humidity. Lighting was provided by cool white fluorescent bulbs with an average light intensity of 180 µmolm⁻²s⁻¹ and a 16/8 h day/night...
photoperiod. Tobacco seeds were soaked in water overnight, then surface sterilized with 70% ethyl alcohol for 30 s, immersed in 5% sodium hypochlorite for 10 min, then rinsed in sterile distilled water three times. Seeds were germinated on Murashige and Skoog (1962) (MS) salt medium. Tobacco were grown in a greenhouse with a 16-h day/8-h night photoperiod at 25 °C.

2.2. RNA extraction and first-strand cDNA synthesis

Arabidopsis total RNA was extracted as previously described (Ulker et al., 2007). Total RNA was extracted from grapevine tissues using an improved SDS/phenol method (Zhang et al., 2003) following inoculation with E. nectar and SA, respectively (Li et al., 2010). Leaves sprayed with sterile distilled water and harvested at the same time points were utilized as untreated controls. First-strand cDNA was synthesized from 500 ng total RNA using the PrimerScript™ II 1st Strand cDNA Synthesis kit (TaKaRa Bio Inc., Dalian, China).

2.3. Cloning of VpTNL1 and sequence analysis

The VpTNL1 cDNA fragment was amplified utilizing gene-specific primers (Supplemental Table 1) and LA Taq DNA polymerase (Takara Bio Inc.). The resulting PCR product was cloned into the pMD18-T vector (TaKaRa Bio Inc.) and sequenced (Beijing Genomics Institute, Beijing, China) to confirm its identity. The VpTNL1 nucleotide sequence was analyzed using the BLASTN and BLASTX programs (http://www.ncbi.nlm.nih.gov/BLAST) and its chromosomal location was predicted using the Genoscope Genome Browser (http://www.genoscope.cns.fr/blat-server/cgi-bin/vitis/webBlat). The amino acid sequence and conserved protein domains were deduced using SMART (http://smart.embl-heidelberg.de/smart/changemode.pl) and ExPaSy (http://au.expasy.org/tools/). The deduced amino acid sequence, including TIR, NB-ARC and LRR domains, was aligned with closely related proteins and a phylogenetic tree was generated using the neighbor joining algorithm and a bootstrap value of 1000 with the ClustalW tool in the MegAlign program (Version 5.07, DNASTAR Inc.).

2.4. Semi-quantitative and quantitative real-time RT-PCR

Semi-quantitative reverse-transcription (RT) PCR reactions were performed using the following profile: initial denaturation at 94 °C for 1 min, followed by 30 cycles of denaturation at 92 °C for 30 s, annealing at 57 °C for 30 s, extension at 72 °C for 30 s, and final extension at 72 °C for 10 min. PCR products were separated on a 1.2% (w/v) agarose gel with ethidium bromide and were imaged under UV light for gene expression analysis. Reactions were repeated three times and all three independent analyses showed the same trends.

For quantitative real-time RT-PCR, reactions were performed using the Bio-Rad iQ5 real-time PCR detection system (Bio-Rad, Hercules, CA, USA). Each reaction was carried out in triplicate with a reaction volume of 20 μl containing 1.0 μl of cDNA as template and SYBR green (TaKaRa Bio Inc.). Reactions were conducted using the following thermal parameters: 30 s at 94 °C, followed by 45 cycles of 5 s at 95 °C, 30 s at 58 °C, and 30 s at 60 °C. For melting curve analysis, 40 cycles at 95 °C for 15 s followed by a constant increase from 60 to 95 °C was utilized. *Grape Actin1* (GenBank Acc. No. AY680701) and *A. thaliana Actin1* (TAIR: AT2G37620) were used as reference genes, respectively. Primer sequences utilized for expression analyses can be found in Supplemental Table 1. All reactions were performed using three biological replicates, each consisting of three leaves harvested from three separate plants, along with three technical replicates. Primer sequences utilized for qRT-PCR are shown in Supplemental Table 1.

2.5. Construction of the heterologous expression vector

To generate the 35S::VpTNL1 heterologous expression construct, the coding sequence of VpTNL1 was first amplified from pMD18-T-VpTNL1 using the gene-specific primers VpTNL1-F-G (5’ - CCC CCG GGA TGG CTT CTT CAA CCA TTC TCT -3’; Smal site underlined) and VpTNL1-R-G (5’ - CCC CCG GGT CAT CCT CAA TAA CCT CGG GTT CAT C -3’; SmaI site underlined), cloned into the binary vector, pCAMBIA 2300 (CAMBIA company), downstream of the constitutive CaMV 35S promoter. The resulting plasmid was verified by sequencing and was subsequently introduced into Agrobacterium tumefaciens GV3101 via electroporation.

2.6. Arabidopsis transformation

The 35S::VpTNL1 construct was transformed into Arabidopsis using the floral dip method (Clough and Bent, 1998). Transgenic plants were confirmed by both growth on MS media supplemented with 60 mg/L kanamycin and subsequent PCR amplification to verify the presence of the transgene. The three transgenic lines exhibiting the strongest resistance to PM infection (L1, L2 and L3) were grown to the T2 generation and homozygous plants were utilized throughout the study.

2.7. Tobacco transformation

The 35S::VpTNL1 construct was transformed into tobacco (*Nicotiana tabacum* L. cv. Petit Havana SR1) using the leaf disk transformation method (Horsch et al., 1985) and transgenic plants were selected on regeneration MS agar medium supplemented with 200 mg/L kanamycin, 1 mg/L benzylaminopurine (BA) and 300 mg/L timentin. Following the generation of shoots, plantlets were transferred onto rooting medium (MS agar medium supplemented with 100 mg/L kanamycin, 0.2 mg/L indole-3-butyric acid (IBA) and 300 mg/L timentin). Subsequent extraction of tobacco genomic DNA and PCR amplification was carried out to confirm the presence of the transgenic insertion.

2.8. Construction of VpTNL1 promoter::GUS gene fusion vectors and A. tumefaciens-Mediated transient expression assays

For isolation of the VpTNL1 upstream region, grapevine genomic DNA was first extracted as described previously (Yu et al., 2013a,b) and subsequent PCR amplification was carried out using primers pVpTNL1-F and pVpTNL1-R (Supplemental Table 1), designed using the Grape Genome Database (12 × ; http://www.genoscope.cns.fr), to amplify a 1498-bp region upstream of the translational start site. The resulting fragment was cloned into pMD18-T and sequenced, and putative regulatory elements were predicted using the PlantCARE program (Lescot et al., 2002) (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The resulting VpTNL1 fragment was then digested with *PstI* and *EcoRI*, and inserted immediately upstream of the *GUS* gene in the binary vector pC0380::GUS (Xu et al., 2010). An empty vector was used as a negative control and 35S::GUS was used as a positive control (Xu et al., 2010). Two further pVpTNL1 fragments comprising -900-bp and -240-bp of upstream region were also amplified and cloned into pC0380::GUS. In each case, the final constructs were verified via sequencing.

All five constructs, respectively, were introduced into *A. tumefaciens* strain GV3101 via electroporation. Agrobacterium-mediated transient expression assays in grapevine leaves were performed as described previously (Santos-Rosa et al., 2008). Briefly, a single *A. tumefaciens* colony transformed with the construct of
interest was grown in liquid Yeast Extract Phosphate (YEP) medium (Smith and Goodman, 1975) supplemented with 100 g/mL kanamycin, 60 g/mL gentamicin and 30 g/mL rifampicin. Bacteria were grown at 28 °C to an OD600 of 0.6, then pelleted by centrifugation at 5000 rpm for 10 min, suspended in 5 ml filtration solution (10 mM 2-((N-morpholino)ethanesulfonic acid (MES), pH 5.7, 10 mM MgCl2 and 15 μM acetosyringone) at room temperature for 30 min, and adjusted to an OD600 of 0.6. Young V. vinifera ‘Red Globe’ grapevine leaves were used for transformation as previously described (Santos-Rosa et al., 2008; Guan et al., 2011). Following transformation, leaves were rinsed in sterile water and kept in a growth chamber at 23 °C and 70% humidity for 48 h prior to GUS staining.

2.9. Pathogen inoculations and hormone treatments

The E. nectar pathogen used in this study was Erysiphe nectar NAU1 (Gao et al., 2016), the pathogen was maintained on fresh leaves of ‘Thompson Seedless’, leaves of V. pseudoreticulata “Baie-H35-1” were infected by touching the adaxial epidermis of the detached leaves with sporulating colonies from the surface of the source leaves, with each inoculation repeated three times (Wang et al., 1995, 1999; Guan et al., 2011; Gao et al., 2016). A mock inoculation was performed with sterile water. Following inoculation, the leaves were covered with plastic bags for one night to maintain high humidity. Both inoculated and mock-inoculated leaves were harvested at 0, 6, 12, 24, 48, 72 and 96 h post-inoculation (hpi). SA treatments were conducted by spraying leaves with 100 μM SA, and harvested at 0, 0.5, 3, 6, 12 and 24 h post-treatment. Leaves were sprayed with sterile water and harvested at the same time points as a negative control. In both PM inoculation and SA treatment experiments, harvested leaves were immediately flash frozen in liquid nitrogen and stored at -80 °C until use.

The Arabidopsis PM pathogen, E. cichoracearum, was maintained on live pad4 mutant plants at 22 °C with a 16/8 h photoperiod in an incubator for the generation of fresh inoculum. E. cichoracearum infection was performed on the leaves of 4-week-old wild-type plants, as well as the three transgenic lines (Tang and Innes, 2001). Six biological replicates of each were used for inoculation. Visual scoring of susceptibility or resistance was carried out 8 days post-inoculation (dpi) (Nie et al., 2011). For qRT-PCR experiments, transgenic and wild-type rosette leaves from 4-week-old plants were inoculated and harvested at 0, 12, 24, 36 and 48 hpi.

Pseudomonas syringae pv. tomato (Pst) DC3000 was successfully overgrown in King’s B medium with the appropriate antibiotics at 28 °C. Bacterial cells were harvested from liquid culture and washed three times, re-suspended in 10 mM MgCl2 and adjusted to an optical density of OD600 = 0.002, and finally supplemented with Silwet-77 to a final concentration of 0.025%. The bacterial suspension was then injected into the abaxial surface of 6–10 rosette leaves from six wild-type and L1, L2 and L3 transgenic lines, respectively, using a needless 1 ml syringe, and infected plants were grown under 75% humidity.

Erysiphe cichoracearum DC was maintained on N. tabacum L. cv. Petit Havana SR1. For E. cichoracearum infection, 4–6 leaves from wild-type plants and 12 transgenic tobacco lines were challenged with E. cichoracearum DC by spraying them with spore suspension (1.2 × 107 spores/ml water). Inoculated tobacco plants were maintained in a greenhouse with a relative humidity of 80% at 26 °C. Visual scoring of disease severity was carried out 20 dpi (Mu et al., 2014).

2.10. Trypan blue staining

For trypan blue staining, 4–6 Arabidopsis rosette leaves were harvested 12 hpi from six wild-type and L1, L2 and L3 transgenic lines, respectively. Leaves were incubated in trypan blue solution (20 mL ethanol, 10 mL phenol, 10 mL water, 10 mL lactic acid [83%], and 30 mg trypan blue) in a boiling water bath for 2 min, followed by 30 min at room temperature. Stained leaves were then cleared overnight at room temperature and stored in 70% glycerol. Staining was examined with a compound microscope (Koch and Slusarenko, 1990; Frye and Innes, 1998; Wees, 2008). Three independent experiments were performed.

2.11. Peroxide assay

The detection of Arabidopsis O2 production was performed using nitroblue tetrazolium (NBT) staining. Rosette leaves from six wild-type and L1, L2 and L3 transgenic lines, respectively, were collected at 24 hpi and stained by vacuum infiltration for 10 min in 2 mM NBT solution in 20 mM phosphate buffer (pH 6.0), followed by incubation room temperature for 1.5 h. Subsequently, leaves were transferred into 95% ethyl alcohol and incubated in an 80 °C water bath for 20 min. Samples were stored in distilled water until photographs were taken (Dunand et al., 2007).

Hydrogen peroxide (H2O2) accumulation was measured using a hydrogen peroxide kit, following the manufacturer's instructions (Nanjing Bio Ins., Jiangsu, China). For quantification of dead cells, Arabidopsis rosette leaves were cut into pieces (0.3 mm in diameter) and stained with 0.2% Evans blue (Sigma-Alrich) for 30 min, then washed several times with distilled water to remove excess stain (Mino et al., 2002; Ahn et al., 2007; Wen et al., 2015). Three independent experiments were performed in each case.

2.12. Callose accumulation

To assess callose accumulation in transgenic Arabidopsis lines, 4–6 rosette leaves from six wild-type and L1, L2 and L3 transgenic lines, respectively, were collected at 3 dpi and incubated in a 1:3 acetic acid: ethanol solution overnight. The samples were then washed with 150 mM K2HPO4 several times. Subsequently, the leaves were stained with 150 mM K2HPO4 and 0.01% aniline for 1 h, and were then stored in 50% glycerol (Schenk and Schikora, 2015). Callose fluorescence was examined using a fluorescent Zeiss microscope (Jena, Germany) with appropriate filters (Hong et al., 2001).

For quantitative determination of callose, 0.1 g Arabidopsis leaves were immersed in ethanol, which was replaced regularly, for 2 days to remove all traces of chlorophyll. Samples were then centrifuged at 5000×g for 20 min, the supernatant was removed and the pellet was resuspended in 0.4 M DMSO. The resulting solution was boiled for 3 min, cooled at room temperature for 1 h, centrifuged at 5000×g for 20 min and the supernatant was transferred to a new tube. The solution was supplemented with 400 μL 0.1% (w/v) aniline blue, 590 mL 1 M glycine/NaOH (pH 9.5) to 100 μL supernatant. Negative control samples were supplemented with the same solution lacking aniline. Samples were placed in a water bath for 20 min and cooled to room temperature. The fluorescence of the samples was measured with a fluorescence spectrophotometer (F-4600, Hitachi, Tokyo, Japan) with excitation at 393 nm and emission at 479 nm, along with a voltage of 400 V. The level of callose fluorescence was determined by subtracting the fluorescence value of the negative control from those of the experimental samples (Kohler et al., 2000; Wen et al., 2015). Three independent experiments were performed.

2.13. Histochemical and fluorometric GUS assays

Histochemical and fluorometric GUS assays were performed on grapevine transiently transformed with various pVpTNL1::GUS
deletion and control constructs and subject to either *E. nectar* infection (carried out 24 h after *Agrobacterium* infiltration) or SA treatment (10 mM SA containing 0.05% (v/v) Tween 20, or the same solution lacking SA as a negative control) (Yu et al., 2013a,b). Leaves were collected for GUS assays 24 h following inoculation or treatment. Staining was performed as described previously (Jefferson, 1987), with grapevine leaves incubated in GUS staining solution (Yu et al., 2013a,b) at 37 °C for 24 h. Following staining, leaves were washed in 70% ethanol several times to remove chlorophyll. For quantitative GUS assays, leaf proteins were initially extracted and normalized by dilution with extraction buffer as described previously (Bradford, 1976). GUS activity was expressed as pmol 4-methylumbelliferon (4-MU, Sigma-Aldrich) produced per minute per mg of protein. Three independent experiments were performed in each case.

3. Results

3.1. VpTNL1 expression following powdery mildew inoculation and SA treatment

To identify candidate genes associated with PM resistance, a global transcriptomic analysis of Chinese wild *V. pseudoreticulata* “Baihe-35–1” was carried out previously using RNA-Seq following challenge with *E. nector* (Weng et al., 2014). We observed that the expression of VpTNL1 was strongly induced after inoculation with *E. nector* NAFU1, which was confirmed in this study via quantitative real-time RT-PCR. Indeed, we observed that VpTNL1 transcript levels were significantly induced following inoculation with PM at 6, 12 and 24 hpi, with expression levels peaking at 24 hpi and then decreasing subsequently (Fig. 1B). Since SA is known to play an important role in the response of plants to biotrophic pathogens, such as PM, we also sought to determine whether VpTNL1 was responsive to treatment with this hormone. Analysis of VpTNL1 expression demonstrated that it was up-regulated significantly following SA treatment, reaching a peak at 6 h post-treatment and then decreasing at 12 and 24 h post-treatment (Fig. 1C). We also evaluated the spatiotemporal expression of VpTNL1 in leaf, stem, tendril, flower and grape skin tissue. Our results indicated that VpTNL1 was expressed at high levels in leaves, stems, tendrils and flowers, but only at low levels in grape skin tissue (Fig. 1E).

3.2. Cloning and sequence analysis of VpTNL1

A 3903-bp VpTNL1 cDNA fragment was isolated from *V. pseudoreticulata* “Baihe-35–1”, which was predicted to contain an open reading frame (ORF) of 2622-bp, along with a 1281-bp 3’-untranslated region (GenBank accession number KX649890). BLAST analysis indicated that VpTNL1 is located on chromosome 18. The deduced encoded protein was found to be 873 amino acids in length (Supplement Fig. 1) with an estimated molecular mass of 99.6 KDa and an isoelectric point (pI) of 8.34. In addition, it is predicted to contain a TIR domain from amino acid residues 23 to 155, an NB-ARC domain from amino acid residues 198 to 474 and four LRR domains from amino acid residues 723 to 736, 771 to 784, 155 to 162, and 450 to 457, respectively. These domains were conserved in other related proteins and were also predicted to be present in the deduced protein.

The full-length VpTNL1 amino acid sequence was also compared to other related putative proteins, and a phylogenetic tree was generated (Fig. 1D). VpTNL1 was found to share 51.5%, 48.0%, 46.4%, 46.0%, 45.9%, 45.0%, 45.8%, and 43.2% identity with putative proteins in *Malus domestica* (GenBank accession no. XP008350156), *Fragaria vesca* (GenBank accession no. XP011469998), *Ricinus communis* (GenBank accession no. XP002523481), *Jatropha curcas* (GenBank accession no. XP012076887), *Solanum tuberosum* (GenBank accession no. XP004243783), *Solanum lycopersicum* (GenBank accession no. XP006348979), *Prunus munme* (GenBank accession no. XP0008237404), *Prunus persica* (GenBank accession no. XP007227167) and *Citrus reticulata* (GenBank accession no. XP006441860), respectively. Structure-based multiple sequence alignments were also carried out to compare the various conserved domains of the VpTNL1 protein to those of homologous proteins from several other species. The TIR domain of VpTNL1 and AtTIR (GenBank accession no. NP177436) was shown to exhibit 45.1% identity at the amino acid level (Fig. 1F), while the NB-ARC domain of VpTNL1 was found to display 27.1%, 31.4%, and 39.2% identity at the amino acid level with that of AtRPS2 (GenBank accession no. SPQ42484), LpL6 (GenBank accession no. AA91021) and SiL2 (GenBank accession no. AA963274), respectively (Fig. 2A).

The amino acid identity noted in these domains occurred mainly in the Walker A, Walker B, RNBA-A, RNBS-B, RNBS-C and GLPL conserved motifs. The LRR domains of VpTNL1 was found to share 26.5% identity with a hypothetical *Drosophila melanogaster* protein (GenBank accession no. AF247766), 27.1% identity with a hypothetical *Salmon salar* protein (GenBank accession no. ACN11505), and 39.4% identity with a hypothetical *Danaus plexippus* protein (GenBank accession no. EHJ77461).

3.3. Constitutive expression of VpTNL1 in Arabidopsis and tobacco enhances resistance to powdery mildew

To further study the biological role of VpTNL1 in defense response, its full-length coding sequence was placed under the control of the constitutive 35S promoter (Fig. 2C) and the resulting cassette was transformed into Arabidopsis Col-0 plants. In total, 49 transgenic independent T1 lines were obtained. The T1 progeny exhibited two distinct phenotypes, with 45 of the 49 independent lines displaying a wild-type morphology and the remaining 4 exhibiting an extremely dwarfed stature along with small, yellow leaves (Fig. 3A). Lines with this latter abnormal phenotype died at the seedling stage. Therefore, we chose to use three lines (L1, L2 and L3; T1 homozygous plants) with a normal phenotype and the strongest resistance response to *G. cichoracearum* for all further experiments. In contrast to wild-type Arabidopsis, the three
transgenic lines displayed very few disease symptoms 8 dpi with *G. cichoracearum* (Fig. 3B and C). Furthermore, the expression levels of pathogenesis-related protein 1 (*PR1*) were evaluated via qRT-PCR at 0, 12, 24, 36 and 48 hpi with *G. cichoracearum* to test whether enhanced resistance to this pathogen was related to the expression of such a defense-related gene. Our results demonstrated that *PR1* transcript levels were significantly higher (3–4-fold) than wild-type by 12 hpi, and remained elevated at all subsequent time points tested (Fig. 3D).

Furthermore, the majority of transgenic tobacco (*N. tabacum* L. Figs. 2A-C).
cv. Petit Havana) stably transformed with the 35S-VpTNL1 construct (Fig. 4A) died at the seedling stage (data not shown), with 13 viable transgenic tobacco lines obtained. The resulting transgenic plants displayed two phenotypes, with 12 of 13 lines displaying a wild-type phenotype and the remaining transgenic line displaying a stunted phenotype that did not produce flowers or seeds (Fig. 4B). The phenotypically normal transgenic tobacco lines were selected for E. cichoracearum DC challenge (Fig. 4B C), whereby transgenic plants showed fewer symptoms following inoculation than wild-type tobacco (Fig. 4E). Indeed, statistical
Fig. 4. Constitutive expression of VpTNL1 in tobacco increases resistance to E. cichoracearum DC. A Adventitious bud formation from wild-type and transgenic tobacco calli. B Phenotypes of wild-type and transgenic tobacco. Lines L1 and L2 displayed a normal phenotype, while L3 displayed a sterile phenotype. C Microscopic examination of E. cichoracearum DC spores prior to inoculation. D Disease symptoms on wild-type and transgenic tobacco leaves at 21 dpi with E. cichoracearum DC.
analyses indicated that the PM disease index of transgenic tobacco was significantly lower than wild-type controls.

3.4. Constitutive expression of VpTNL1 in Arabidopsis enhances resistance to Pst DC3000

Interestingly, a PLN03210 domain was predicted within the VpTNL1 amino acid sequence, which has been reported to be correlated with resistance to *P. syringae* pv. glycinea race 6 (Kim et al., 2009). We therefore hypothesized that VpTNL1 could also play a role in providing resistance to bacterial infection. To test this hypothesis, transgenic (L1, L2 and L3) and wild-type plants were inoculated with the bacterial pathogen, Pst DC3000, and disease symptoms were assessed. In wild-type plants, severe symptoms were noted 3 dpi, with yellowing leaves and spreading macerations (Fig. 5A and B). In the three transgenic lines tested, less severe symptoms were observed 3 dpi than those present in wild type (Fig. 5A and B).

To determine whether this enhancement in resistance resulted from the inhibition of bacterial growth, a colony counting assay was utilized to assess growth of Pst DC3000 in infected leaves. Bacterial number was significantly reduced in transgenic lines (L1, L2 and L3) compared to wild-type plants (Fig. 5F) following infection. To observe the effect of heterologous VpTNL1 expression on cell death, infected leaves were stained with trypan blue 12 hpi, with large clusters of dead cells visible in transgenic leaves and very few dead cells apparent in wild-type plants (Fig. 5C). To further quantify cell death following infection, infected leaves were stained with Evans blue and fluorescence was analyzed. Our results demonstrated that transgenic lines exhibited a 7–10-fold enhancement in the level of cell death compared to wild-type plants (Fig. 4H). Nirotblue tetrazolium (NBT) staining was performed in transgenic and wild-type plants to detect superoxide anion accumulation, with results revealing a substantial and significant increase in the accumulation of O$_2$ in transgenic plants compared to wild-type plants following infection (Fig. 5D). Similarly, quantitative detection of H$_2$O$_2$ showed that levels of H$_2$O$_2$ in transgenic plants were 2–3 fold higher than wild-type plants following challenge with this bacterial pathogen (Fig. 5G). To examine callose deposition following pathogen inoculation, infected leaves were stained with aniline blue. We found that the level of callose deposition in transgenic plants was significantly increased compared to wild-type plants (Fig. 5E), with

![Fig. 5. Constitutive heterologous expression of VpTNL1 in Arabidopsis enhances disease resistance to Pst DC3000.](image-url)

A Disease symptoms caused by Pst DC3000 in wild-type and transgenic lines (L1, L2 and L3). Injected leaves were marked with white pipette tips and pictures were taken 3 d post-inoculation (dpi). B Disease symptoms on individual leaves 3 dpi with Pst DC3000. C Trypan blue staining of leaves from wild-type and transgenic lines inoculated with Pst DC3000. D Nitro blue terazolium (NBT) staining of inoculated leaves from wild-type and transgenic plants. E Microscopic examination of callose deposition following inoculation of leaves from wild-type and transgenic lines. F Bacterial growth was measured on the leaves of wild-type and transgenic lines at 3 and 5 dpi with Pst DC3000. G H$_2$O$_2$ concentration in the leaves of wild-type and transgenic lines at 0 and 24 h post-inoculation (hpi) with Pst DC3000. H Quantification of cell death in the leaves of wild-type and transgenic lines at 12 hpi. I Quantification of callose accumulation in the leaves of wild-type and transgenic lines at 3 dpi. Experiments encompassed three biological replicates, with each consisting of six rosette leaves from three separate plants, and three technical replicates. Bars represent means ± SE, asterisks indicate statistical significance compared to wild type (Student’s t-test, *P* < 0.05, **P** < 0.01).
further quantification demonstrating that transgenic plants accumulated 4–6-fold more callose than wild-type plants following infection (Fig. 5I).

3.5. Isolation and analysis of the VpTNL1 promoter sequence

A 1,498-bp upstream sequence of VpTNL1 was isolated from wild Chinese *V. pseudoreticulata* “Baihe-35-1” genomic DNA (Supplement Fig. 2) (GenBank accession number KX649891), and putative regulatory elements within it were predicted (Fig. 6A). The resulting cis-elements could be classified into three groups, with the first including basal transcriptional regulatory elements, such as 32 TATA boxes and 25 CAAT box elements. The second group included cis-elements involved in abiotic and hormonal response, such as 8 SA-responsive TCA elements, 4 defense and stress-responsive TC-rich elements (Supplement Fig. 2), 1 auxin-responsive AuxRR-element, 3 heat-stress HSE elements and 3 drought-induced MBS elements. The third group included light-responsive elements, such as 1 L-box, 1 ATCT-motif, 1 Box4, 1 CATT-motif, 1 MRE motif and 3 SP1 elements. Based on the presence of predicted regulatory elements involved in response to biotic and abiotic stress, these results suggest that the VpTNL1 promoter plays a role in its involvement in biotic and abiotic stress-response.

3.6. Activation of the VpTNL1 promoter by PM infection and SA treatment

To test the transcriptional responsiveness of the VpTNL1 promoter, the 1498-bp promoter fragment was fused upstream of the GUS reporter gene (Fig. 6B), and GUS activity was examined following Agrobacterium-mediated transient expression assays in grapevine leaves. The 35S::GUS cassette was utilized as a positive control and pC0380::GUS (Xu et al., 2010), which includes a promoterless GUS cassette, was used as a negative control. GUS activity was examined using both histochemical staining and fluorometric assays following inoculation with *E. necator* NAFU1 or treatment with SA. Leaves transformed with the 35S::GUS construct exhibited strong GUS activity, while pVpTNL1::GUS-transformed grapevine leaves displayed lower levels of GUS activity. No GUS activity was detected in mock and negative control transformed leaves (Fig. 6C). Following inoculation with *E. necator* NAFU1 or SA treatment, transformed leaves displayed similar levels of GUS staining as mock-inoculated control leaves (Fig. 7B). However, when GUS activity was quantified fluorometrically, our results indicated that GUS activities were increased 1.43- and 1.71-fold in transformed leaves.

Fig. 6. Major predicted cis-elements in the VpTNL1 promoter sequence and pVpTNL1::GUS fusion experiments. A Schematic diagram of the major predicted cis-acting elements in the 1498-bp upstream region of VpTNL1. B Schematic diagrams (not to scale) of the pVpTNL1::GUS vector for Agrobacterium-mediated transient expression in grapevine leaves, along with pC0380::GUS (negative control) and 35S::GUS (positive control). C GUS histochemical assay of V. vinifera ‘Red Globe’ following Agrobacterium-mediated transient expression of the GUS fusion vectors.
Fig. 7. VpTNL1::GUS deletion constructs and GUS analysis of grapevine leaves following inoculation with *E. necator* NAFU1 and SA treatment. **A** Schematic diagram (not to scale) of pVpTNL1 promoter 5′ deletions fused to GUS. **B** GUS histochemical assay of grapevine leaves transiently expressing each of the deletion constructs following mock-treatment, inoculation with *E. necator* NAFU1, and SA treatment. **C** Quantitative determination of GUS activity in grapevine leaves transiently expressing each of the deletion constructs. GUS activity was measured 24 h after inoculation with *E. necator* and SA treatment. The mean GUS activity (±SD) was calculated from three independent experiments (*n* = 3). Numbers on left indicate the fold induction of GUS activity, and the significant differences were assessed using one-side paired *t*-test (**P < 0.01, *P < 0.05).
leaves following inoculation with *E. necator* NAFU1 and SA treatment, respectively, over mock-treated controls (Fig. 7C). To narrow down the location of possible pathogen-responsive and SA-responsive cis-elements, we also generated two 5′ truncated *VpTNL1* fragments (-900-bp and -240-bp) and inserted them upstream of *GUS* (Fig. 7A). *GUS* activity was found to be induced 1.25- and 1.45-fold following inoculation with *E. necator* NAFU1 and SA treatment than mock treatment in leaves transformed with the -900-bp cassette, respectively, while no significant difference was found in *GUS* activity between treated and untreated leaves transformed with the -240-bp cassette (Fig. 7C).

4. Discussion

We previously analyzed the leaf transcriptome of wild Chinese *V. pseudoreticulata* “Baihe-35-1” following challenge with the causal agent of PM, *E. necator*, and identified a gene that is predicted to encode a TIR-NA-ARC-LRR domain that was up-regulated substantially following inoculation (Weng et al., 2014). In the present study, we isolated the ORF sequence of this gene, which we have termed *VpTNL1*, and constitutively expressed it in Arabidopsis and tobacco. These resulting transgenic lines were then assessed for their response to fungal and bacterial infection. In addition, we also isolated the upstream promoter region of this gene and generated a *VpTNL1* promoter::GUS fusion, along with two further 5′ promoter deletion cassettes, in an attempt to elucidate the region involved in transcriptional response to pathogen attack.

The expression of NB-ARC-LRR genes has frequently been found to be up-regulated in plants infected by pathogens (Wan et al., 2012; Arya et al., 2014; Rodamilans et al., 2014; Zhang et al., 2016), and as such, they have been proposed to be involved in the monitoring of pathogenic microbes (Mukhtar et al., 2011; Zhang et al., 2016) or the activation of a downstream defense signaling pathway (Gassmann et al., 1999). In line with this, the *VpTNL1* gene examined in this study was found to be expressed at significantly higher levels in *V. pseudoreticulata* “Baihe-35-1” leaves following challenge with the causal agent of PM, *E. necator* (Fig. 1B). In addition, we also found that the exogenous application of SA to grapevine leaves resulted in up-regulation of *VpTNL1* (Fig. 1C), which corresponds well with previous reports in which application of this phytohormone resulted in a similar phenomenon in Arabidopsis (Nandety et al., 2013; Mohr et al., 2010). Given the fact that SA plays a central role in the activation of both local defense reactions and the induction of systemic resistance, our results suggest that the function of *VpTNL1* in disease resistance may be achieved, at least in part, via the SA signaling pathway.

Several reports have indicated that the constitutive overexpression of R genes can be harmful to plants. Indeed, it has often been associated with a dwarfed stature, and in some cases lethality (Stokes et al., 2002; Shirano et al., 2002; Frost et al., 2004; Li et al., 2007; Nandety et al., 2013), which has been proposed to be the result of a fitness cost underlying the necessity for tight regulation of R genes (Heil and Baldwin, 2002; Li et al., 2007). Consistent with these previous results, we found that approximately 8% of our independent transgenic *T1* Arabidopsis lines displayed stunted growth, small yellow leaves, and eventual death. Similarly, the majority of our transgenic tobacco lines died at the seedling stage. These findings suggest that expression of *VpTNL1* from the 3′S promoter in these lines caused constitutive defense activation or toxicity in plants, although the exact mechanism by which this occurs remains to be determined.

In addition to the abnormal phenotypes sometimes observed in plants transgenically expressing R genes, various studies have also found that overexpression of these genes yields broad spectrum enhancement of resistance to pathogens as a result of up-regulation of *PR1* expression (Li et al., 2007). For example, this effect has been noted with *Pst* and *Pto* overexpression in tomato, respectively (Oldroyd and Staskawicz, 1998; Tang et al., 1999), as well as Cf-9 overexpression in tobacco (Wulff et al., 2004). We also found a broad spectrum enhancement in disease resistance in our phenotypically normal *VpTNL1* transgenic Arabidopsis lines compared to wild type, with improved resistance to both the fungal species, *G. cichoracearum* (the causal agent of PM; Fig. 3), and the bacterial *Pst* DC3000 (Fig. 4). Similarly, *VpTNL1* transgenic tobacco lines were found to exhibit superior resistance to *E. cichoracearum* (the causal agent of PM; Fig. 5). As has been found previously, this enhancement in disease resistance appears to result, at least in part, from up-regulation of *PR1* expression, since *PR1* transcript levels were found to be 3–4-fold higher in our *VpTNL1* transgenic Arabidopsis lines following challenge with *G. cichoracearum* than in wild-type plants (Fig. 3D).

Reactive oxygen species play an important role in plant defense against various pathogens (Mittler et al., 2004; Torres et al., 2006), with hydrogen peroxide (*H2O2*) and superoxide anion (*O2*-) being the two main forms. In this study, *VpTNL1* transgenic Arabidopsis lines displayed more rapid and higher levels of ROS accumulation (*H2O2* and *O2*-) than wild-type plants following inoculation with *Pst DC3000* (Fig. 4 D, G). It is conceivable that this type of rapid ROS accumulation has the potential to be directly toxic to the pathogen (Lamb and Dixon, 1997), and could also lead to an enhanced HR that results in host cell death, thus preventing pathogen spread (Heath, 2000; Torres et al., 2006; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815885/Geczew et al., 2006). Indeed, high concentrations of ROS are known to lead to oxidative stress, causing HR-like cell death in plants (Kovtun et al., 2000; Zhang et al., 2012), and over-expression of various R genes in plants have been found to induce HR-like cell death previously (Weaver et al., 2006; Oldroyd and Staskawicz, 1998; Zhang et al., 2004). In the present study, constitutive expression of *VpTNL1* in Arabidopsis was also shown to increase HR-like cell death following inoculation with *Pst DC3000* (Fig. 4 C, H), which suggests that the oxidative burst following infection likely triggers HR-like cell death, enhancing resistance to the pathogen. While these results are intriguing, it is possible that the oxidative burst observed in our transgenic lines could also trigger additional alterations that promote disease resistance, such as the activation of downstream defense gene expression (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815885/Dat et al., 2000; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815885/Grant and Loake, 2000).

Along with ROS, the production of callose is also known to play a role in plant disease defense, providing a physical barrier to slow pathogen invasion and contributing to plant innate immunity (Luna et al., 2011; Jones and Dangl, 2006). Indeed, it has been proposed that *pmr4* Arabidopsis mutants, which are resistant to PM, are able to resist penetration of the fungus via the deposition of callose (Jacobs et al., 2003; Ellinger et al., 2013). Similarly, overexpression of *Pto* in tomato causes an increase in callose deposition and a significant restriction of pathogen growth (Tang et al., 1999). Likewise, our *VpTNL1* transgenic Arabidopsis lines were also found to exhibit an augmentation in the deposition of callose compared to wild-type plants following inoculation with *Pst DC3000*, which likely contributed to enhanced resistance to this pathogen (Fig. 4 E, I). Interestingly, it has been proposed that callose biosynthesis is induced by the production of ROS (Luna et al., 2011). Since ROS were found to accumulate to higher levels in our transgenic lines than in wild-type plants, it is tempting to speculate that this may be a factor in the increased production of callose in these lines. However, further study will be needed to determine the exact factors involved in callose accumulation in *VpTNL1* transgenic lines in response to pathogen challenge.
The promoter sequence of VpTNL1 was predicted to contain four TC-rich repeats (5'-ATTCTCTAAC-3'), which are believed to be involved in defense and stress response (Diaz-De-Leon et al., 1993), and eight TCA elements (5'-CAGAAAAAGGA-3'), which have been proposed to play a role in SA-mediated response (Goldsbrough et al., 1993). It is therefore feasible that these motifs may be involved in the transcriptional response of VpTNL1 to E. necator and SA treatment, respectively (Fig. 7 B). We generated two further 5’ promoter deletion constructs to test this hypothesis, with the first (-900-bp) containing two TC-rich repeats and eight TCA elements, and the second (-240-bp) bearing no TC-rich repeats or TCA elements. The GUS activity in grapevine leaves containing the -900-bp deletion construct increased 1.25- and 1.45-fold following inoculation with PM and SA treatment, respectively, compared to mock treatment. Conversely, grapevine leaves containing the -240-bp deletion construct displayed no significant change in GUS activity following inoculation with E. necator or SA treatment compared to mock-treated controls, which corroborates the proposal that the TC-rich and TCA elements play a role in its transcriptional response.

In conclusion, our results suggest that VpTNL1 functions to confer at least some level of resistance to both fungal and bacterial pathogens in plants, and that this ability is mediated, at least in part, via the up-regulation of PR1. Furthermore, it appears that promoter elements located between -240 and -900-bp upstream of the translational start codon (possibly TC-rich repeats and TCA elements) are involved in the transcriptional up-regulation of this gene seen in response to PM infection and SA treatment, respectively. Future investigations of a possible interaction between VpTNL1 and an E. necator AVR (effector) protein, along with other possible proteins that elicit downstream defense responses, will provide further understanding of the molecular mechanisms behind the high level of disease resistance observed in Chinese wild V. pseudoreticulata.

Contributions

XW, ZL and ZW designed the study. ZW and LY performed the experiments. ZW, LY, HM and ZL analyzed the results, XW and ZL provided overall guidance throughout the study. ZW, SS and XW wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31572110 and 31501740) and the Program for Innovative Research Team of Grape Germplasm Resources and Breeding (2013KCT-25).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.plaphy.2017.01.017.

References

