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Abstract: Myelocytomatosis oncogenes (MYC) transcription factors (TFs) belong to basic
helix-loop-helix (bHLH) TF family and have a special bHLH_MYC_N domain in the N-terminal
region. Presently, there is no detailed and systematic analysis of MYC TFs in wheat, rice,
and Brachypodium distachyon. In this study, 26 TaMYC, 7 OsMYC, and 7 BdMYC TFs were identified
and their features were characterized. Firstly, they contain a JAZ interaction domain (JID) and a
putative transcriptional activation domain (TAD) in the bHLH_MYC_N region and a BhlH region in
the C-terminal region. In some cases, the bHLH region is followed by a leucine zipper region; secondly,
they display tissue-specific expression patterns: wheat MYC genes are mainly expressed in leaves,
rice MYC genes are highly expressed in stems, and B. distachyon MYC genes are mainly expressed in
inflorescences. In addition, three types of cis-elements, including plant development/growth-related,
hormone-related, and abiotic stresses-related were identified in different MYC gene promoters.
In combination with the previous studies, these results indicate that MYC TFs mainly function in
growth and development, as well as in response to stresses. This study laid a foundation for the
further functional elucidation of MYC genes.
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1. Introduction

bHLH (basic helix-loop-helix) family is the second largest plant transcription factor (TF) family.
They are characterized by a bHLH domain, which consists of 50–60 amino acids that form two
distinctive regions, the basic region and HLH (helix-loop-helix) region [1]. The basic region functions as
a DNA-binding motif, while the HLH region forms two amphipathic α helices with a linking loop [1–3].
In the bHLH family, there are some special members, named myelocytomatosis oncogenes (MYC).
These members are characterized by a so-called bHLH_MYC_N region in the N-terminal and a bHLH
region in the C-terminal [1,2,4,5].

MYC genes function in various physiological and molecular processes, especially in growth
and development. In Arabidopsis thaliana, MYC2 functions synergistically with MYC3 and MYC4
in regulating leaf senescence [6], root elongation [7], stamen development [8], seed production,
and seed storage protein accumulation [8,9], as well as chlorophyll degradation [10]; other Arabidopsis
MYC genes, like ALCATRAZ functions in cell separation in fruit dehiscence [11], SPATULA controls
development of carpel margin tissues [12], and ABORTED MICROSPORES (AMS) plays a crucial role
in tapetum cell development and pollen wall formation [13]. In rice (Oryza sativa), the orthologous
AMS gene Tapetum Degeneration Retardation (TDR) is necessary for tapetum degradation and anther
development [14]; OsMYC2 is expressed in all tissues, and highly expressed in the spikelets and floral
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organs [15]. It regulates spikelet development through the interaction with OsJAZ1 and the activation
of the downstream gene OsMADS1 [16].

MYC genes are also involved in plant secondary metabolism. For example, overexpression
of Arabidopsis MYC3 and MYC4 result in more anthocyanin accumulation [17], and MYC2, MYC3,
and MYC4 regulate glucosinolate biosynthesis [18]. Wheat (Triticum aestivum) MYC1 and barley
(Hordeum vulgare) Myc1 (HvAnt2) regulate anthocyanin synthesis in pericarp too [19,20]. Additionally,
NbMYC2 regulates alkaloid biosynthesis [21], and SmMYC2 regulates the phenolic acid biosynthesis
in Salvia miltiorrhiza [22], while TcJAMYC1/2/4 negatively regulate the expression of genes associating
with paclitaxel biosynthesis in Taxus cuspidate [23].

Meanwhile, MYC genes play important roles in response to abiotic and biotic stresses. For
example, the expression of AtMYC2 is induced by drought and salt stresses [24], and overexpressing
this gene improves osmotic stress tolerance [25]. Arabidopsis MYC67 and MYC70 interact with ICE1 and
negatively regulate cold tolerance in Arabidopsis [26]. Additionally, rice OsMYC2 negatively regulates
JA-mediated resistance to a necrotrophic pathogen [27,28].

Especially, several MYC genes were reported to associate with JA (jasmonate) signal. Arabidopsis
MYC2, MYC3, MYC4, and MYC5 are master regulators in JA signal pathway [17,27,29,30]. Arabidopsis
JASMONATE-INSENSITIVE1 is essential for jasmonate-regulated defense responses [27]. In addition
to regulating spikelet development via the JA signal [16], OsMYC2 mediates numerous defense-related
transcriptional changes via JA signaling [31].

Wheat (T. aestivum) and rice (O. sativa) are important cereal crops, and B. distachyon is a grass
model plant and has a close genetic relationship with wheat [32]. In this study, TaMYC, OsMYC,
and BdMYC genes were characterized at the genome-wide level, and the expression patterns were
analyzed. Meanwhile, the specific domain of MYC proteins and the cis-elements in the promoters were
identified. Based on these results, we summarized the characteristics of MYC TFs. This study laid a
foundation for further functional elucidation of MYC genes.

2. Results

2.1. Wheat, Rice, and B. distachyon MYC TFs

Totally, 26 putative TaMYC, 7 OsMYC, and 7 BdMYC genes were identified in the relevant genomes,
respectively (Figure 1), including two reported genes: TaMYC1 and OsMYC2 [15,19]. Among these
40 genes, 34 genes were verified by ESTs (Expressed Sequence Tags) deposited in the NCBI database,
and 18 TaMYC genes constitute 6 sets, every set includes three homologous genes in A, B, and D
subgenomes, respectively.

Except for TaMYC1 and OsMYC2, other 25 TaMYC genes were named as TaMYC2A to TaMYC12B
according to their distribution on chromosomes and genomic homology; other 6 OsMYC and 7 BdMYC
genes were named as OsMYC1, OsMYC3 to OsMYC7, and BdMYC1 to BdMYC7 based on their
chromosomal localization (Figure 1).

The physical features of these MYC TFs were predicted. In wheat, the protein length varies from
456 (TaMYC7A) to 699 (TaMYC4D) amino acids; the PI (Isoelectric Point) varies from 4.96 (TaMYC6D) to
8.73 (TaMYC9D); and the molecular weight varies from 49.17 kDa (TaMYC9A) to 63.69 kDa (TaMYC7D).
In rice, the protein length varies from 473 (OsMYC7) to 904 (OsMYC4) amino acids; the PI varies from
4.68 (OsMYC5) to 8.36 (OsMYC3); and the molecular weight varies from 50.67 kDa (OsMYC3) to 97.39
kDa (OsMYC4). In B. distachyon, the protein length varies from 470 (BdMYC5) to 706 (BdMYC7); the
PI varies from 4.53 (BdMYC6) to 7.22 (BdMYC5); and the molecular weight varies from 50.43 kDa
(BdMYC5) to 76.24 kDa (BdMYC7). The protein subcellular localization was predicted by CELLO web
server [33] and results showed that 26 MYC proteins locate in the nucleus, while other 14 MYC proteins
locate in the chloroplast, cytoplasm, mitochondria. The detailed information is listed in Table S1.
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while the red lines highlight the homologous gene pairs.

2.2. Sequence Alignment and Phylogenetic Tree of MYC TFs

Based on previous studies [13,18,34–38], protein sequences of 13 known animal MYCs and 8 known
Arabidopsis MYCs obtained from GenBank [39], and sequences of 40 MYCs in this study were used to
perform sequence alignment. Multiple sequence alignment identified a distinct N-terminal bHLH_MYC_N
region (Figure S1). As shown in Table S2, the consensus ratio of 56 conserved amino acid residues is more
than 50% in the bHLH_MYC_N domains. Leu-100, Trp-113, Tyr-115, Trp-119, and Leu-147 are identical in
these 40 MYC TFs, indicating that these amino acids are key component of bHLH_MYC_N domain. More
importantly, one JAZ interaction domain (JID) and one putative transcriptional activation domain (TAD)
were identified in the bHLH_MYC_N domain. Furthermore, a bHLH domain and a leucine zipper region
were found in the C-terminal region (Figure 2 and Figure S1).

In animals, MYC proteins are key regulators of mammalian cell proliferation that activate
genes as part of a heterodimeric complex with the protein Max [40]. As shown in Figure S2,
the alignment of 6 known Max proteins (Genbank number: NP_660092.1 [Homo sapiens], XP_002613458.1
[Branchiostoma floridae], XP_008195890.1 [Tribolium castaneum], NP_510223.1 [Caenorhabditis elegans],
NP_001099103.1 [Bos taurus], NP_002373.3 [Homo sapiens]) and other MYC proteins showed that they
are highly conserved in bHLH domains, while poorly conserved in leucine zipper region.

According to the alignment of bHLH domains in rice and Arabidopsis bHLH proteins [41], some
amino acids residues, such as Val-960 and Ala-962 in the basic region, Asn-972 and Val-981 in the
first Helix, Ser-986, Lys-987, Met-1006, and Asp-1008 in the Loop, and Asp-1017 in the second Helix,
are only found in plant MYC proteins (Figure 2 and Table S3). In addition, although the bHLH-ZIP
domain is commonly present in some human c-Myc and Max proteins [42], such as myc_H. sapiens,
myc_B. taurus, c-myc_M. musculus, n-Myc_S. scrofa in Figure 2, they were lowly conserved in the
leucine zipper region.

To understand the evolutionary relationships of MYC TFs, a neighbor-joining (NJ) phylogenetic
tree was constructed based on the full-length alignment of 40 putative MYCs, 13 known animal MYCs,
and 8 known Arabidopsis MYC. As shown in Figure 3, these MYC TFs are classified into six sub-groups
with highly bootstrap values. The class V is the largest while the class II was the smallest. There are
9 TaMYCs, 2 OsMYCs, and 2 AtMYCs in class I; 1 OsMYC, 1 BdMYC, and 1 AtMYC in class II; 3
TaMYCs, 1 OsMYC, and 1 BdMYC in class III; 2 TaMYCs, 2 BdMYCs, 1 AtMYC in class IV; 12 TaMYCs,
3 OsMYCs, 3 BdMYCs, and 4 AtMYCs in class V; and 13 known animal MYCs in class “animal”.
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previous studies as described above.

2.3. Gene Structures and Conserved Motifs

We used genomic DNA sequences and CDS (coding sequences) to analyze the gene structure
(Figure 4B). Gene structures of TaMYC, OsMYC, and BdMYC genes are similar within the same
subgroup. In wheat, the exon number ranges from 1 to 11. In rice and B. distachyon, the exon number
ranges from 1 to 10. Notably, most class V members only have one exon.

Conserved motifs are helpful to understand the functions of MYC TFs. In this study,
8 conserved motifs were identified (Figure 4C). Motifs 2, 4, 6, 7, and 8 constitute the
bHLH_MYC_N domain (Figure 4D). Among these five motifs, motifs 6 and 8 form JID and
motif 2 composes TAD. JID consists of approximately 90 amino acids, including a specific
motif (W-[TN]-Y-[AG]-[IVL]-[FYL]-W-X(6,19)-L-[GT]-W-[GK]-[DE]-G). TAD includes approximately
70 amino acids and a specific motif ([VL]-[TG]-[DEG]-[TA]-E-[WML]-[FY]-[FY]-X(2)-[SC]-[MA]-
X(3)-F-X(4)-G-[LAG]-P-G-X(9)-W).

In addition, as MYCs belong to bHLH TF families [3,41,43], motifs 1 and 5 constitute bHLH
domain (Figure 4D), and motif 3 constitutes the leucine zipper in class I, II, and V members.
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Figure 4. (A) Phylogenetic relationships, (B) gene structures, (C) motifs, and (D) conserved regions of wheat,
rice, and B. distachyon MYCs. The tree was constructed with 1000 bootstrap replications using MEGA7 based
on the full-length protein sequence. The exon–intron structure of these genes was graphically displayed by
the Gene Structure Display Server using the coding sequences (CDS) and DNA sequences of MYC genes.
The protein sequence of MYC proteins was used to predict the conserved motifs/region by using the MEME
Suite web server.
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2.4. Synteny and Homologous Gene Pairs

Gene duplication events include tandem duplication and segmental duplication. We analyzed
the gene duplication by using the MCScanX software [44]. As shown in Table S4, only one segmental
duplication pair (TaMYC6D-TaMYC7D) was found.

In addition, orthologous between MYC genes in wheat, B. distachyon, A. thaliana, rice, H. vulgare,
Sorghum bicolor, and Zea mays were also investigated (Table S5). A total of 12, 0, 19, 7, 22, and 28
orthologs and orthologous gene pairs between wheat and B. distachyon, A. thaliana, rice, H. vulgare,
S. bicolor, and Z. mays (Table S5); 2, 5, 4, 6, and 7 orthologs and orthologous gene pairs between B.
distachyon and A. thaliana, rice, H. vulgare, S. bicolor, and Z. mays; 6, 3, 3, and 2 orthologs and orthologous
gene pairs between rice and A. thaliana, S. bicolor, H. vulgare, and Z. mays. These results suggested that
MYC genes of monocots have strong relationships.

2.5. Identified Cis-Elements in MYC Gene Promoters

We also identified the cis-elements in the 2-kb promoters of MYC genes using the PlantCARE
web tool [45]. As shown in Figure 5, three types of cis-elements, which are related to
plant growth/development, hormone, and abiotic stresses, were identified. The cis-elements
related to growth/development include light-responsive element G-box (CACGTC) [46] and Sp1
(GGGCGG) [47], the metabolism regulation related cis-element O2-site [48], and the meristem
expression related cis-element CAT-box [49]. The cis-elements related to hormones include the
methyl jasmonate (MeJA)-responsive elements CGTCA-motif [50] and TGACG-motif [51], the abscisic
acid (ABA)-responsive element ABRE (ACGTG) [52], the gibberellin(GA)-responsive element
GARE-motif [53], the auxin-responsive elements TGA-element [54] and AuxRR-core (GGTCCAT) [55],
and the salicylic acid (SA)-responsive element TCA-element (CCATCTTTTT) [56]. The cis-elements
associated with abiotic stresses include adaptive elements such as drought-inducibility element MBS
(CAACTG) [57], low-temperature responsiveness element LTR (CCGAAA) [58], anaerobic induction
ARE (AAACCA) [59], and anoxic specific inducibility element GC-motif (A/CGCCGCGCA) [60] were
detected in a series of members. Combined with the phylogenetic tree, these results showed that the
phylogenetically similar genes shared identical cis-elements.

2.6. Expression Profiles of MYC Genes

We analyzed the expression patterns of TaMYC, OsMYC, and BdMYC genes by quantitative
real-time polymerase chain reaction (qRT-PCR). Among these 40 MYC genes, the expression of 9
genes (TaMYC3A/B/D, TaMYC9A/B/D, OsMYC6, BdMYC1, and BdMYC2) was not detected in all cases.
As shown in Figure 6, MYC genes displayed tissue-specific expression. A total of 11 TaMYC genes
(including TaMYC2A, TaMYC4A/B/D, TaMYC1/5B/5D, TaMYC6D, TaMYC7A, TaMYC7B, TaMYC7D,
TaMYC8A/B/D, TaMYC10A/B/D, TaMYC11D, and TaMYC12B) were highly expressed in leaves, 4 OsMYC
genes (OsMYC1, OsMYC2, OsMYC4, and OsMYC7) were highly expressed in stems, and 5 BdMYC
genes (BdMYC3, BdMYC4, BdMYC5, BdMYC6, and BdMYC7) were highly expressed in inflorescences.

Additionally, we also analyzed the expression of these genes in two-week seedlings with different
treatments (Figure 7). Although the results showed no regularity, there are some meaningful findings.
In wheat, the expression of TaMYC1/5B/5D is induced by GA (Gibberellin), indicating the involvement
in GA signal. TaMYC7A, TaMYC7B, and TaMYC7D displayed different expression patterns, implying
that their functions are diversified. In rice, the expression of six expressed genes is upregulated by
different abiotic stresses, suggesting their important roles. In B. distachyon, BdMYC3 is drastically
induced by heat.
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3. Discussion

3.1. The Characteristics of MYCs

bHLH TFs are the second largest class of plant TFs [61]. Plant MYC TFs belong to
the bHLH superfamily. MYC proteins have one bHLH_MYC_N domain in the N-terminal
region [1]. In this domain, Leu-100, Trp-113, Tyr-115, Trp-119, and Leu-147 amino acids residues
are complete conserved in all TaMYC, BdMYC, and OsMYC proteins. The bHLH_MYC_N
include two domains: JID and TAD. The former is necessary for interacting with JAZ proteins,
while the latter is a putative transcriptional activation domain [2]. For example, Arabidopsis
MYC2, MYC3, and MYC4 interact with the C-terminal JAS domain of JAZ proteins through JID,
and AtMYC2 recruits the mediator complex required for transcription initiation through its TAD,
which specifically interacts with the activator interaction domain [62,63]. We also identified one specific
motif (W-[TN]-Y-[AG]-[IVL]-[FYL]-W-X(6,19)-L-[GT]-W-[GK]-[DE]-G) in JID and one specific motif
([VL]-[TG]-[DEG]-[TA]-E-[WML]-[FY]-[FY]-X(2)-[SC]-[MA]-X(3)-F-X(4)-G-[LAG]-P-G-X(9)-W) in TAD.

The C-terminal region of TaMYCs, BdMYCs, and OsMYCs is conserved and includes the typical
basic region and HLH domain, and most MYCs contain leucine zipper (bZIP) domain (Figure 2 and
Figure S2). Previous reports showed that the basic region of MYC proteins mainly recognizes CACGTG
(G-box) sequence and CATGTG sequence, both E-box DNA-binding sites (5′-CANNTG-3′), and the
bHLH domain are required for the heterodimer to bind to the G-box in target genes [2]. The bHLH-ZIP
domain is present in human c-Myc and Max proteins [42], which have DNA-binding activity and has
been predicted to mediate protein–protein interactions. The interaction of Max and c-Myc depends
on the integrity of the c-Myc HLH-Zip domain, but not the basic region or other sequences outside
the domain [42]. Different from animal MYCs, plants MYCs contain a longer (about 70 amino acids)
leucine zipper. Furthermore, the C-terminal leucine zipper domain can form the dimer that affects
the specificity of interaction with other TFs [64]. Compared to other bHLH proteins in plants [43,65],
bHLH-ZIP domain only appeared on group B which MYC and Max exist.
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Compared to bHLH genes, MYC genes have three special kinds of cis-elements in their gene
promoters. These cis-elements associate with their special functions. Moreover, MYC genes show
tissue-specific expression patterns. Additionally, different from other non-MYC-bHLH genes which
have 2 or more exons [41,43,65], most class V MYC members, which is the largest class only, have
one exon.

3.2. Functions of MYC TFs

Previous studies showed that MYC TFs function in plant development and growth [2,9,37]. For
example, MYC proteins function as regulators in regulating plant seed production, root elongation,
leaf senescence, and stamen development [6–9]; they also regulate plant secondary metabolism and
are actively involved in hormone-mediated plant growth [21,66,67]. In this study, most MYC genes are
expressed in roots, stems, leaves, and inflorescences (Figure 6). In combination with the identification
of many cis-elements related to plant growth and development and hormone stress, these results
further suggest their functions in growth and development.

The expression profiles of many MYC genes indicate their probable functions in response to
abiotic and biotic stresses. For example, Arabidopsis MYC2, MYC3, MYC4, and MYC5 are induced by
jasmonate [17,27,29,30]; MYC3 and MYC4 act additively with MYC2 to regulate defense against insect
herbivory [30]; and MYC5 regulates JA-mediated plant defenses against herbivores and is involved in
JA-regulated plant resistance to pathogens [37]. Overexpression of OsMYC2 results in bacterial blight
resistance in rice [16]. In maize, the expression of two MYC genes, ZmbHLH103 and ZmbHLH104, is
significantly upregulated under drought stress [65]. In this study, the expression of 6 OsMYC genes
is induced by different abiotic stresses (Figure 7), further indicating that MYC genes participate in
response to abiotic stresses. Consistently, many cis-elements related to abiotic stresses were identified.

Taken together, we can draw a conclusion that MYC TFs mainly function in growth/development,
and in response to environmental stresses.

4. Materials and Methods

4.1. Identification of MYC TFs in Wheat, Rice, and B. distachyon

The wheat, rice, and B. distachyon genome sequences, protein sequences, coding sequences
(CDS), and upstream 2-kb genomic DNA sequences were downloaded from Ensembl plants [68].
The chromosomal distribution of MYC genes was obtained from the wheat, rice, and B. distachyon
genome annotations in Ensembl plants [68]. To identify the MYC TFs in wheat, rice, and B. distachyon,
7 known MYC proteins, including wheat TaMYC1, barley HvMyc1, rice OsMYC2, Arabidopsis MYC2,
MYC3, MYC4, and AMS proteins sequences, were downloaded from Ensembl plants [68] and were
used to build a hidden Markov model (HMM), then searched against the genome protein sequences of
wheat, rice, B. distachyon, respectively, with a threshold of E< 1e-5 and the length of amino acid >200
aa (amino acid). Then, the HMM profile of the bHLH-MYC_N domain (PF14215) was downloaded
from the Pfam database [69] to search against the protein sequences of wheat, rice, and B. distachyon
with a threshold of E < 1e-5. After manual correction to remove the redundancy and alternative
splice, the NCBI-CDD database (NCBI Conserved Domains Database) and SMART database (Simple
Modular Architecture Research Tool) were used to confirm the putative MYC proteins. The ExPASy
webserver [70] was used to predict the theoretical isoelectric point and molecular weight of TaMYCs,
OsMYCs, and BdMYCs. To further verify the existence of MYC genes in wheat, rice, and B. distachyon,
we performed BLASTN [71] to search for ESTs using the CDS of MYC genes. The CELLO web
server [33] was used to predict the subcellular localization of MYC proteins.

4.2. Multiple Sequence Alignment and Phylogenetic Analysis of MYCs

An unrooted neighbor-joining (NJ) tree was constructed by MEGA 7.0 software with 1000 bootstrap
replications and Jones–Taylor–Thornton model based on full-length protein sequence alignments was
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done by using the ClustalX 2.0 method [72,73]. The multiple sequence alignment was performed
using the ClustalX 2.0 and visualized by Jalview [74], and the phylogenetic tree was visualized by
Evolview [75].

4.3. Analysis of Gene Structures and Conserved Motifs

The exon–intron structure of MYC genes was graphically displayed by the Gene Structure Display
Server [76] by using the CDS and DNA sequences of wheat, rice, and B. distachyon MYC genes.
The protein sequences of MYCs were used to predict the conserved motifs by using the MEME online
program [77] with the following parameters: optimum width of motifs set from 5 to 200 amino
acids and maximum number of motifs set at 8. The gene structure and motifs were visualized by
Evolview [75].

4.4. Analysis of Cis-Elements, Gene Duplication, and Synteny

The 2-kb upstream genomic DNA sequences of MYC genes were submitted to the PlantCARE
online tool to identify the cis-elements [44]. Gene duplication and systeny analysis of MYCs in different
species were done by using the MCScanX software [43] and visualized by Dual Systeny Plotter software
by CJ-Chen [78].

4.5. Expression Profile Analysis

The cultivar of T. aestivum ‘Chinese Spring’, rice cultivar ‘Dongjin’, and B. distachyon Bd-21
were planted in an artificial climate chamber at 26/22 ◦C (day/night) with a photoperiod of 16/8 h
(day/night). For tissues analysis, roots, stems, leaves, and inflorescences were collected at the heading
stage. For different abiotic stresses, 2-week-old seedling plants were subjected to H2O (CK), heat
(42 ◦C), cold (4 ◦C), drought (20% PEG6000), salt (200 mM NaCl), ABA (100 µM), and GA (100 µM)
for 2 h, then whole plants were collected for RNA isolation. Total RNA was extracted using RNAiso
Reagent (TaKaRa, Dalian, China) according to the manufacturer’s protocol and treated with DNaseI.
The Transcriptor First Strand cDNA Synthesis Kit (Roche) was used to synthesize cDNA based on the
manual. The QuantStudioTM Real-Time PCR Software (ThermoFisher Scientific) was used to carry out
qRT-PCR, data acquisition, and analysis. The volume of each reaction was 15 µL containing 7.5 µL of
SYBR Premix Ex Taq (TaKaRa, Dalian, China), 0.75 µL (10 pmol µL−1) each of forward and reverse
primers, 0.5 µL of cDNA (5.0 ng µL−1), and 5.5 µL of ddH2O. The reference genes (Taactin, Osactin,
Bdactin) [79–81] were used to normalize the expression of the TaMYC, OsMYC, and BdMYC genes and
the 2(−∆∆Ct) analysis method was used to determine the relative expression level [82]. The following
program was used for qRT-PCR: 50 ◦C for 2 min, 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for
15 s, 60 ◦C for 1 min in the PCR stage and 95 ◦C for 1 min, 95 ◦C for 15 s in the melt curve stage. Primers
for 6 sets of TaMYC genes (TaMYC3A/B/D, TaMYC4A/B/D, TaMYC1/5B/5D, TaMYC8A/B/D, TaMYC9A/B/D,
and TaMYC10A/B/D) were universal in each set, because of the highly conserved sequences in A, B,
and D sub-genomes, thus the detected expression is the combination of three copies of homologous
genes. The primers are listed in Table S6.

5. Conclusions

In this study, 26 TaMYC, 7 OsMYC, and 7 BdMYCTFs were identified and divided into five groups.
The MYC proteins contained a JAZ interaction domain (JID) and a putative transcriptional activation
domain (TAD) in the bHLH_MYC_N domain of the N-terminal region, the bHLH domain was found
in the C-terminal region, some MYCs followed by a bHLH-ZIP domain. The expression profiles and
identified three kinds of cis-elements indicate that MYC TFs function in plant development and in
response to environmental stresses. Taken together, our results provide a solid foundation for further
structural and functional investigations on MYCs.
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