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Abstract

Insects, like all eukaryotes, require sterols for structural and metabolic pur-
poses. However, insects, like all arthropods, cannot make sterols. Choles-
terol is the dominant tissue sterol for most insects; insect herbivores produce
cholesterol by metabolizing phytosterols, but not always with high efficiency.
Many insects grow on a mixed-sterol diet, but this ability varies depending
on the types and ratio of dietary sterols. Dietary sterol uptake, transport, and
metabolism are regulated by several proteins and processes that are relatively
conserved across eukaryotes. Sterol requirements also impact insect ecol-
ogy and behavior. There is potential to exploit insect sterol requirements to
(@) control insect pests in agricultural systems and (§) better understand
sterol biology, including in humans. We suggest that future studies focus
on the genetic mechanism of sterol metabolism and reverse transportation,
characterizing sterol distribution and function at the cellular level, the role of
bacterial symbionts in sterol metabolism, and interrupting sterol trafficking
for pest control.
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INTRODUCTION

Insects, like all eukaryotes, use sterols in three critical ways: first, as structural components in
the phospholipid bilayer of the membranes of cells and organelles (11, 25); second, as precursors
to important steroid hormones (48, 89, 133); and third, as a molecule that regulates organismal
growth and patterning via the Hedgehog (Hh) signaling pathway (29, 107). More recently, sterols
have been associated with defense against pathogenic agents and parasitoids (23, 108). Cholesterol
(Figure 1), the most-studied and best-understood sterol, was first discovered 261 years ago in
human gallstones by the French doctor Francois Poulletuer de La Salle. It is an omnipresent lipid
in animals, including insects, but typically occurs in small absolute amounts, which vary depending
upon the species, size, and feeding biology (11). For example, sterols tend to occur at very low levels
in aphids (e.g., 0.06 wg/mg in Schizaphis graminum), but at higher concentrations in grasshoppers
(e.g., 1.6-2.5 pg/mg in Schistocerca americana) and caterpillars (e.g.,0.78-1.29 wg/mg in Helicoverpa
zea) (8,21, 69, 71).

The bulk of sterols in animals, including insects, is incorporated into the phospholipid bilayer
of cells and organelles. Theoretically, sterols can account for up to half of the total lipid molecules
in cellular membranes (2, 47). But how do sterols behave in lipid bilayers? Sterols are amphipathic
molecules, meaning that they have hydrophilic (polar) and hydrophobic (nonpolar) parts. The po-
lar part, a C3 hydroxyl group, orients outward from the bilayer and can form hydrogen bonds with
the hydrophilic phosphate head of a phospholipid molecule. In contrast, the nonpolar portion is
composed of a tetracyclic triterpenoid and an isooctyl hydrocarbon chain. This hydrophobic part
of a sterol extends inwards and interacts with phospholipid fatty acid tails; more specifically, the
tetracyclic structure and the side chain align adjacently to the fatty acid chain (60). In the bilayer,
cholesterol and phospholipids interact to enhance mechanical coherence of the membrane by re-
ducing fluidity (i.e., cholesterol acts as a stabilizer when surrounded by phospholipid molecules)
and increasing rigidity (i.e., the ordering of the hydrocarbon chains). This has the effect of sup-
pressing passive permeability, which improves the ability of a cell to control the movement of
various molecules, especially polar ones, across the membrane and into the cell (98). There are
also cholesterol-rich regions—termed lipid rafts—in the phospholipid bilayer. These lipid rafts
have physical features that are quite distinct from those of the surrounding membrane landscape
and are often associated with integral membrane proteins (e.g., transmembrane proteins). How-
ever, these sites tend to be enriched in sphingolipids (another major class of membrane lipids),
rather than phospholipids (54, 153). Currently, our understanding of lipid raft distribution, struc-
ture, and function in cell membranes is relatively basic, especially in insects.

A relatively small amount of sterol is required for metabolic purposes, in particular for pro-
ducing molting hormone. The details of insect molting have been reviewed thoroughly else-
where (41, 82, 147), so we provide a quick overview with an emphasis on variation in molting
hormone structure as a function of the sterol precursors being used. In most insects, 20-
hydroxyecdysone (20E) is the major molting hormone (Figure 1), and cholesterol is the required
precursor. Some insects, including plant-feeding heteropterans, leaf-cutting ants, and honeybees,
use the ecdysteroid makisterone as their molting hormone (82, 93, 115, 134). These insects have
lost the ability to dealkylate phytosterols. Instead, they directly convert campesterol into makis-
terone A (which has a methyl at the C24 position) or sitosterol into makisterone C (which has an
ethyl at the C24 position) (Figure 1). Molting hormone variation tied to sterol use is also illus-
trated by the adaption of Drosophila pachea, a specialist on the senita cactus (Lophocereus schottii).
This food resource is rich in lathosterol (Figure 1), so it serves as the precursor for the ecdys-
teroid that drives molting in D. pachea; this is in contrast to D. pachea’s close relative Drosophila
melanogaster, which uses cholesterol. The exclusive dependence of D. pachea on lathosterol as the
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Figure 1 (Figure appears on preceding page)

Chemical structure of (#) cholesterol and steroid hormones, (&) sterols, and (¢) sterol conjugates. Cholesterol is the most common sterol
found in insects. 20-Hydroxyecdysone (20E) is the major steroid hormone in most insects; cholesterol is its precursor. Some insects use
another group of steroid hormones, makisterone A or C; they differ from 20E in that they contain an additional methyl or ethyl group,
respectively, at C24 (R1) (82). Sitosterol (24-ethylcholest-5-en-3p-ol), stigmasterol (24-ethylcholest-5,22-en-3B-ol), and campesterol
(24-methylcholest-5-en-3p-ol) are common phytosterols. They differ structurally from cholesterol by a methyl or ethyl group (/ight
green) in the side chain at C24 and/or a C22 double bond (purple); 24a-alkylcholesterol is often seen in evolutionarily derived plants
(146). These phytosterols can be directly converted into steroid hormones, i.e., makisterone A or C. Lathosterol (5a-cholest-7-en-
3B-ol) is a sterol produced in the senita cactus that Drosophila pachea uses to produce 20-hydroxyecdysone (85); it differs from
cholesterol only by the shift of the double bond from C5 to C7 (brown). Ergosterol (5,7,22-ergostatrien-3p-ol) is a common fungal
sterol that contains a beta-methyl group (dark green) at C24 [in contrast to the dominant alpha-alkyl sterols in plants (93)]; it also has
two additional double bonds at C7 (brown) and C22 (purple). Cholestanol (Sa-cholestan-3B-ol) is saturated at C5 (pink), in contrast to
cholesterol. Sterol ester, steryl glycoside, and acyl steryl glycoside comprise the three major groups of conjugated sterols, with the
3-OH of sterols (R2) covalently bonded to fatty acids, sugars, and sugar esters, respectively (43).
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precursor substrate is the result of four amino acid changes in the oxygenase-like protein encoded
by a neverland gene (85).

Unlike yeasts and vertebrates, insects (and all other arthropods) are sterol-auxotrophs (11, 25).
This inability to produce sterols likely exists because insects lack the enzyme-coding gene that
converts farnesyl pyrophosphate to squalene (120, 139). The fact that insects have lost the ability
to generate sterols de novo is puzzling. Perhaps there is an evolutionary advantage to sterol-
auxotrophy given that (#) insects have innate oxygen-supply limitations as a function of their blind-
ended tracheal respiratory system (56), and () cholesterol synthesis is extremely oxygen consum-
ing and metabolically expensive. An inadequate oxygen supply could place a significant constraint
on the synthesis of sterols, and this could reduce and/or delay insect growth (32,37, 103, 118).

Since the last comprehensive review on insect sterol utilization—published 14 years ago (11)—
several technological advances, including advanced gas and liquid chromatography, gene chips,
high-throughput sequencing and screening, and cellular and molecular immunology and bio-
chemistry, have been applied to better understand insect sterol nutrition and physiology. Our
goal in this review is to provide an overview of the most recent advances concerning insect sterol
nutrition, ranging from metabolism to homeostasis, physiological ecology, and the potential of
exploiting insect sterol metabolic constraints to manage insect herbivore pests; in addition, we
aim to more deeply explore sterol biology, including its implications for humans.

STEROL FORM, FUNCTION, AND METABOLISM

Sterol Use in Different Insects and Consequences of Feeding
on Different Sterols

There is significant structural variation in sterols—more than 1,000 natural cholesterol deriva-
tives have been identified from a broad range of organisms (102). However, most common sterols
contain at least one double bond (C5), with additional double bonds sometimes occurring at other
positions, including C7, C22, and/or C24. Cholesterol, phytosterols, and ergosterol are the major
sterols in animals, plants, and fungi, respectively (Figure 1). Half of all insects eat plants, and
200 unique sterols have been recorded from different plant species. Additionally, most individual
plant species contain multiple sterols; in some cases, more than 60 unique sterols have been
identified (although most of these occur at nanogram levels) (14). For example, in hemp seed,
70% of the identified phytosterols comprise less than 2% of the total sterol profile (92). Sitosterol,
campesterol, and stigmasterol are the most common phytosterols (92, 97), which mainly differ
from cholesterol by a methyl or ethyl substituent at C24 (Figure 1). Moreover, sterols can occur
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in free forms or as conjugates. In the latter case, the 3p-OH of sterols conjugates with fatty acids
or carbohydrates (Figure 1) (43, 54, 67). There are also many sterol enantiomers. Theoretically,
cholesterol has 256 enantiomers, but the only one found in organismal membranes is the 3R,
20R configuration—which has an equatorial C3 hydroxyl group (102). It has been suggested that
the physicochemical properties of the proteins involved in sterol synthesis may determine the
stereospecific formation of sterols (30, 51). Finally, stanols (saturated at C5; Figure 1) are a type
of steroid similar to sterols. They are also found in plants, but usually only in small amounts
(111). Insects reared on stanol-rich diets accumulate stanols in their tissues (69, 71). Most sterols
have the general stereo-structure needed for function in cellular membrane, but variation in the
type, amount, and ratio of different dietary sterols has species-specific effects on the rate and total
growth of insects (5, 6, 25, 69).

Insects generally acquire sterols from two main sources: parental loading during oogenesis and
food. The sterol content in embryos—typically more than half being conjugated to fatty acids such
as palmitate, oleate, or stearate (54, 73)—derives mostly from maternal loading of sterols. This
is particularly true for parthenogenic insects like aphids (19). However, some sterol also comes
from membrane cholesterol originating from sperm (16, 45). This collective reservoir is usually
enough to allow the first molt of Drosophila neonates reared on diets that lack dietary sterols (45,
140). Ultimately, insufficient cholesterol ingestion during larval stages can affect oogenesis and
lead to reduced fecundity (9, 16, 28, 36, 55, 69, 70, 96, 113). There are, however, instances where
fecundity can be recovered by supplementing with dietary cholesterol, as shown in the yellow fever
mosquito, Aedes aegypti (130). This suggests that there may be a sterol threshold for oogenesis.
Interestingly, despite the need for females to allocate a significant amount of cholesterol into
embryos, Manduca sexta discharge about one-fourth of their total cholesterol in the meconium at
emergence (73).

As immature insects grow and develop, dietary sterols are mostly allocated toward cellular
membranes, although there is tissue-specific distribution of different sterols (e.g., cholesterol as
the dominant membrane insert in central nervous system tissue), and development is severely
impaired when sterol supply is interrupted (18, 19, 24, 25, 42, 68, 70, 73). Insect dietary sterol
use studies published prior to 2003 were comprehensively summarized by Behmer & Nes (11).
Since their review, additional studies on insect sterol use have been published, and we summarize
those findings in Supplemental Table S1. Most insects can use cholesterol directly; examples of
exceptions include one dipteran (D. pachea) and two lepidopteran species (Homona coffearia and
Crambus trisecta). However, insect herbivores, unlike carnivorous insects, rarely encounter suffi-
cient amounts of dietary cholesterol. Instead, they ingest (and metabolize) phytosterols that occur
in plants in concentrations of ca. 1-3 mg/g dry weight. This amount is generally equal to or higher
than sterol concentrations found in insect herbivores, with pollen sometimes being an exception
(18,19,42,61, 68,70, 112).

The tissue profile of plant-feeding insects is mostly cholesterol given that many herbivorous in-
sects readily convert ingested common phytosterols to cholesterol, especially lepidopteran species
(Supplemental Table S1) (11, 69, 71). However, there are exceptions. Grasshoppers (Orthoptera:
Acrididae) can only dealkylate sitosterol and campesterol (4, 6, 8), while heteropterans have com-
pletely lost this ability (127). Some insects can dealkylate but are not particularly efficient. Aphids
generally convert sitosterol to cholesterol at a rate of approximately 40% (21), and, consistent
with reports for other dipteran insects, D. melanogaster has a limited ability to metabolize dietary
sterols (24). However, D. melanogaster is very good at using various cholesterol-like molecules,
including common phytosterols, in lipid bilayers (25, 82, 88). The flexibility to use sterols other
than cholesterol as membrane inserts can be highly beneficial for insects, especially for those that
use ecdysone as their hormone. For such insects, a small amount of cholesterol must always be
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available and spared for producing ecdysone (117). However, the ability of insects to use a mixture
of sterols in their membranes varies from species to species (3). As stated above, D. melanogaster
can tolerate a high proportion of noncholesterol sterols in their membranes. In contrast, grasshop-
pers cannot (4-6, 8,24, 25). Lepidopteran insects are somewhere in between. They can use atypical
sterols or steroids as membrane structure, but only up to a threshold (Supplemental Table S1)

70).

Recent Advances in Identifying Genes Involved in Insect
Phytosterol Metabolism

The catalytic steps that insects use for converting phytosterols into cholesterol has been revealed
by identifying sterol metabolites (125). However, much less is known about the genetic basis of
sterol metabolism, especially dealkylation. Recently, a microsomal membrane-associated reductase
primarily enriched in the gut of Bombyx mori has been shown to mediate the in vitro conversion of
desmosterol, the last metabolite in the dealkylation, into cholesterol (27). This enzyme belongs to
a flavin adenine dinucleotide—dependent oxidoreductase family, and the vertebrate orthologs cat-
alyze the reduction of demosterol to cholesterol in the de novo cholesterol biosynthesis pathway
(142). Additionally, around this time, Jing et al. (71) conducted the first genome-wide study on
sterol metabolism in one caterpillar species, H. zes, and identified a number of genes potentially
involved in dealkylation. Interestingly, lepidopteran insects can metabolize 3-keto-steroids into
two diastereomers, 3a- and 3B-cholestanol, potentially by 3a-reductase and 3p-reductase, respec-
tively. These two enzymes were previously described in the metabolism of 3-keto-ecdysone. The
multiple functions of sterol-metabolizing enzymes hint at the complexity of the sterol metabolism
network in insects (69, 148). Auchenorrhynchan insects can survive on sterol-poor xylem, and
cholesterol is the major sterol in these insects (13, 67). Recently, a parallel genomic analysis on a
planthopper species, Nilaparvata lugens, and its yeast-like symbiont revealed that the host genome
encodes the four key enzymes to convert zymosterol—produced by the symbiont—into choles-
terol. Additionally, it appears that a shared metabolic pathway—between the host and the fungal
symbiont—directs metabolism of zymosterol to cholesterol. However, verifying this is challeng-
ing, as is often the case for research using omics-based approaches and technologies (35).

STEROL HOMEOSTASIS: CELLULAR UPTAKE AND TRANSPORT

All eukaryotes have and use sterols for physiological purposes, but sterol homeostasis mechanisms
differ between arthropods and vertebrates. For example, in vertebrates, sterol regulatory element—
binding proteins (SREBPs) sense cholesterol levels in the endoplasmic reticulum (ER) and subse-
quently coordinate cholesterol synthesis and cholesterol uptake machinery. In insects, and despite
its name, SREBPs sense and regulate phospholipids (33, 65, 120). Nonetheless, all eukaryotes have
mechanisms in place that regulate the flow of sterols into and out of cell and organelle membranes,
as well as facilitating their intracellular transportation once inside a cell. Sterols can also be found
in other aqueous milieu in eukaryotes, including the gut lumen and blood. In the insect gut lumen,
free sterols combine with other free lipids to form soluble micelles that can be absorbed across the
peritrophic membrane and into the lipid bilayer of enterocytes. In the aqueous hemolymph, free
sterols are solubilized by specialized transport particles that shuttle hydrophobic sterols between
different organs and tissues.

Cellular sterol concentrations in insects are tightly regulated (25), and when there is a surplus
of cholesterol, it can be converted into a cholesterol ester or removed by cellular efflux (73, 122).
The molecular mechanisms regulating this process have been studied extensively in recent years,
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and we graphically summarize this process in Figure 2. Sterols enter into enterocytes mainly via
NPCI1b. Next, NPC2 mediates the transfer to lysosomal NPCla. Once inside the cell, sterols can
be used in several ways. Some will be transported to various organs or tissues (e.g., the fat body) via
lipophorin. Alternatively, some are used directly as a membrane structural component or stored
as cholesteryl esters catalyzed by sterol O-acyltransferase (61, 65, 81); the esterification process
is bidirectional. Additionally, esterified sterols can be hydrolyzed by the lipase Magro. If cellular
sterol levels are in excess, then they can be expelled back into gut lumen via ATP-binding cassette
transporters (122). Dysregulation of cholesterol homeostasis can affect insect growth, nutrient
accumulation, and behavior patterns (25, 53, 62, 68, 70). However, in most natural situations,
insects are more likely to encounter sterol deficits than surpluses.

Niemann-Pick Type C Genes

In humans, Niemann—Pick type disease is a group of inherited metabolic disorders in which lipids
accumulate in harmful quantities in various tissues, including the liver and brain; mutations in
NPC1 and NPC? are associated with dysregulation of human cholesterol homeostasis (65, 99).
These two genes are also found in insects, plus Caenorbabditis elegans, which suggests that both
genes are evolutionarily conserved (128). In insects, NPCI and NPC?2 play key roles in cholesterol
absorption into midgut epithelial cells and intracellular trafficking, and both bind cholesterol in
vitro. However, there are important differences. NPCl1 is a large polytopic transmembrane protein
consisting of an amino terminal domain (NTD), a sterol-sensing domain (SSD), and a Patched
domain (63, 152). In contrast, NPC2 is a group of small intralysosomal and soluble proteins (64)
and serves as a lysosomal transporter that delivers cholesterol directly to the NTD domain of
NPCI1 (31, 66). In all animals studied to date, loss of function of either NPC1 or NPC2 is lethal.

NPCl likely evolved from the resistance-nodulation-cell division (RND) superfamily of bacte-
rial transporters (51). Most insects—the exceptions being basal hemipterans such as aphids, white-
flies, psyllids, and planthoppers—have 2 NPCI homologs: NPC1a and NPC1b. This likely occurred
through a duplication event in a common insect ancestor (152). Insect NPCla and NPC1b have
higher sequence similarity and identity to mammal NPCI1 compared to the mammal NPCI ho-
molog, NPC1L1 (45). In insects, NPC1a is tied to intracellular trafficking (as is human NPCI), and
it is expressed ubiquitously in a range of different tissues and throughout development (63, 104).
Loss of NPC1a function has no effect on embryogenesis, but Drosophila larval molting generally
does not occur because cholesterol is trapped in aberrant lysosome-like organelles in different
tissues, including the ring gland, where molting hormone is produced (119). The transcriptional
regulation of NPCIa ring gland expression involves a cis-regulatory element (RSE) in the NPCI
promoter and the gene broad complex (br) (144). Expressing NPCla specifically in the ring gland
of NPCla mutants can rescue function, but male adults are sterile, likely due to a malfunction
of cholesterol trafficking during spermatogenesis in the testes (141). The NPC14 mutation also
causes cholesterol to aggregate in the brain, which affects the function of neurons and, in turn,
locomotion (110). Interestingly, sterol trafficking is not totally interrupted in the mutant flies, so
other redundant factors must be involved in cholesterol transportation (45, 63).

In contrast, NPC1b is not ubiquitously expressed in insects. Instead, it is usually restricted to
the midgut tissue, mirroring that of mammal NPCI1L1 expressed at the apical membrane of en-
terocytes (columnar epithelial cells of the insect midgut) (25, 66, 140, 152). NPC1b is responsible
for dietary sterol absorption in enterocytes, especially following a pulse of cholesterol enrichment
after a meal (73). Its expression is negatively related to the concentration of dietary cholesterol,
likely through the regulation of hormone receptor 96 (HR96) (20). Interestingly, other lipids such
as linoleic acid can reduce the uptake of dietary cholesterol through downregulation of NPC1b
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Figure 2

A graphical depiction of dietary sterol uptake, transport, and intracellular trafficking in insects. Sterol (in this case cholesterol)
contained in micelles formed from ingested foods moves across the peritrophic matrix and through the enterocyte membrane (lipid
bilayer) via NPC1b (the major route) (thick line) or diffusion (a minor route) (wavy /ine). Cholesterol entering the cell via NPCl1b is
transported into lysosomes, within which NPC2 mediates the transfer of cholesterol to membrane-bound NPCla (63, 140).
Cholesterol diffusing into cells is carried by SCP-2 proteins through the cytoplasm (76, 83). Once inside a cell, cholesterol has four
possible destinations. First, it can be inserted into the membrane of enterocytes. Second, it can move into various organelles, including
the endoplasmic reticulum and mitochondrion. Here, cholesterol can be used as a membrane structural component or form cholesteryl
esters catalyzed by sterol O-acyltransferase (ACAT) (61, 65, 81). Additionally, Magro can hydrolyze sterol esters (122). Third, some
cholesterol is expelled from enterocytes via ABC transporters. Fourth, and most likely, cholesterol is transported to various organs and
tissues via lipophorin (Lpp). The loading of cholesterol into Lpp requires the assistance of Lipid Transfer Particle (LTP). Both Lpp and
LTP, scaffolded by apoLpp and apoL'TP, respectively, are synthesized in the fat body. Microsomal Triglyceride Transfer Protein (MTP)
promotes the assembly of these lipoproteins (107). Finally, HR96 regulates cholesterol cellular homeostasis by coordinating cellular
absorption and reverse transport, depending on dietary cholesterol levels.
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(87). Moreover, the expression of NPC1b in NPC1a mutants cannot recover the wild-type pheno-
type. This indicates that NPCI1b plays no role in intracellular sterol trafficking and that the two
factors are not interchangeable.

NPC2 belongs to the myeloid differentiation 2-related lipid recognition protein (ML) fam-
ily, and homologs have been identified in a range of organisms, including yeast, C. elegans, mouse,
and human. Interestingly, of this group, only insects have multiple NPC2 homologs, likely through
multiple rounds of gene duplication (64, 74); insect NPC2a is the most similar homolog to human
NPC2. Drosophila has eight NPC2 homologs, and each has the conversed disulfide bond—forming
cysteine residues to form the potential hydrophobic cholesterol-binding core (46, 80). However,
not all NPC2 homologs are equally distributed across different insect tissues, and different ho-
mologs can express highly in the same tissue. However, the redundancy of NPC2 homologs in
insects may be functionally significant given the nutritional requirement for sterols and the need
for each cell to practice intracellular sterol transport.

Hormone Receptor 96

HR96 is a nuclear receptor consisting of a highly conserved DNA-binding domain—for regu-
lating downstream transcription factors—and a less conserved ligand binding domain. There are
22 groups of nuclear receptor in insects, and HR96 belongs to NR1J1 (17, 41). The transcripts
of HR96 are mostly confined to three tissues—the gastric caeca of the midgut, the fat body, and
the Malpighian tubules—that are closely associated with nutrient processing (49, 79). The in vivo
ligands for HR96 are undetermined (61), but they can bind cholesterol in vitro. They express
a basal level of activity in the absence of cholesterol and are downregulated by elevated dietary
cholesterol (20, 61). HR96 senses cholesterol (or its derivatives) and transduces this information
to downstream factors, similar to the way Liver X receptors (LXRs) can sense sterols intracellu-
larly in mammals (38, 44, 75). Specifically, HR96 responds to dietary sterol concentrations. For
example, when flies are reared on low-sterol diets, Drosophila HR96 promotes genes (e.g., NPC1b
and NPC?2) related to cholesterol uptake and reduces the expression of those linked to cholesterol
esterification (e.g., sterol O-acyltransferase) and efflux (e.g., Magro and ABC transporters) (61).
Additionally, some genes (e.g., NPC14) respond to cholesterol independently of HR96. HR96 is
found in nearly all insects but is noticeably absent in aphids (17). Equally notable is that NPC1b
is also missing in aphids (152).

Sterol Carrier Protein-2

Sterol carrier protein-2 (SCP-2)—with its conserved tertiary structures—belongs to the lipid
transfer protein-2 gene family; it is a small soluble protein abundant in the cytoplasm in ver-
tebrates and insects (39, 55, 83, 90). In vertebrates, SCP-2 is involved in the transfer of newly
synthesized cholesterol from the ER to the plasma membrane (65). In contrast, insect SCP-2—
which has strong binding affinity to cholesterol—is enriched in organs involved in cholesterol
absorption, transportation, and metabolism. It has been suggested that SCP-2 may also help des-
orb and transfer dietary sterols from the enterocyte apical membrane through the cytoplasm to
the basal membrane of enterocytes (in contrast to the NPCla- and NPCl1b-dependent pathway
stated above) (as illustrated in Figure 2) (12, 76). Overexpression of SCP-2 can promote the cel-
lular uptake of cholesterol, while its knockdown reduces dietary cholesterol absorption.

In lepidopteran insects such as B. mori, M. sexta, Helicoverpa armigera, Spodoptera littoralis, and
Spodoptera litura, a single SCP-x/SCP-2 gene encodes two isoforms, one for SCP-2 and the other
for a fused SCP-X (a thiolase) and SCP-2 (C-terminus) protein. Some of the fused protein can
then be proteolytically cleaved into SCP-X and SCP-2 (36, 50, 55, 76, 90, 129). This is similar to
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SCP-2 expression in vertebrates. In contrast, the dipteran A. zegypti SCP-x/SCP-2 gene can only
proteolytically produce the cleaved SCP-2 protein, not the corresponding transcripts (40, 83, 84,
109). Additionally, A. aegypti also has an independent sterol-trafficking SCP-2 homolog that shares
low identity (24%) with the one derived from the fused gene (16, 84).

Lipoproteins

Following uptake into midgut cells, sterols can be transferred to other organs in the insect body,
but they must first pass through the aqueous hemolymph, which baths insect organs and carries
resources (e.g., amino acids, sugars, lipids, ions and salts) to them. Insect lipophorin—a type of
lipoprotein—resides in the aqueous hemolymph and shuttles sterols from enterocytes to various
organs (24). Lipoprotein metabolism in insects and the roles of lipoproteins in the transport of
fat and other lipids have been extensively reviewed elsewhere (116, 136, 143). Lipophorin loads
sterols at the gut using Lipid Transfer Particle (LTP)—a high-density apoB-family lipoprotein (as
is lipophorin)—and a loss of lipophorin function causes cholesterol accumulation in enterocytes
(Figure 2) (107, 149). Both lipophorin and LTP are exclusively secreted by the fat body, and
this process requires Microsomal Triglyceride Transfer Protein (MTP). In a similar manner,
mammal homologs serve as the predominant transporters of cholesterol in the blood (123). In
contrast to mammals, insect lipoproteins are reusable (137). Lipophorin is also responsible for
the redistribution of sterols from the fat body to other tissues during the larval wandering stage.
The loading of sterols from the fat body to lipophorin, unlike in mammals, is TP independent
and follows a simple aqueous diffusion pathway (72, 73).

Factors Involved in Reverse Transportation of Sterols

Transintestinal reverse transport in insects, as in mammals, removes excess or harmful sterols.
To date, two groups of genes have been found that appear to regulate this process. Insects use
the intestinal lipase Magro, an enzyme equivalent to its mammal homolog LipA (Figure 2) (122).
Magro is expressed and confined in the membrane of enterocytes and can hydrolyze cellular sterol
and cholesterol esters. The Drosophila magro mutants display excess total cholesterol and choles-
terol esters, but normal free cholesterol levels. In mammals, sterols in their free form are reverse
transported via ABC transporters; the same mechanism is believed to operate in insects (Figure 2)
(15, 20, 61, 122). Similar to the preferential efflux of phytosterols over cholesterol in mammals,
insects also selectively reverse transport some sterols more than others. For example, Drosophila
larvae reverse transported more lanosterol and ergosterol compared to zymosterol, campesterol,
and brassicasterol (24). Caterpillars preferentially reverse transport cholestanol over cholesterol,
possibly through two ABC transporters, and, more interestingly, reverse transport was sensitive
to the relative spatial arrangement of sterol atoms (69, 71). The broader functions of these ABC
transporters as they relate to sterol regulation should be investigated in more detail.

STEROL PHYSIOLOGICAL ECOLOGY

Physiological ecology investigates how an organism’s physiology interacts with its environment,
including available food resources, its microbiome, and other living organisms that share its habi-
tat. All insects require a source for sterols, for multiple physiological purposes, and this require-
ment has been shown to affect foraging behavior in the context of several different environmental
factors (7). To date, the sterol physiological ecology of plant—insect interactions has been studied
the most (11), but recent work has highlighted how symbiotic microbes and fungi contribute to
insect-sterol interactions and that sterol requirements can drive foraging behavior in predaceous
insects.
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Plant-Insect Interactions

We know more about sterol use in plant-feeding insects than in any other insect group (11), in
part because many of the plant-feeding insects that have been studied (especially caterpillars)
are pest species that can be reared under laboratory conditions on synthetic diets. In contrast,
we know very little about the comparative sterol physiology of naturally occurring insect her-
bivore communities. Janson et al. (67) conducted the first study of this kind using an insect
herbivore community that feeds on Solidago altissima, a goldenrod species that has been the
focus of a large number of ecological studies (114). The sterol profile of S. altissima contained
A7-sterols (spinasterol, 22-dihydrospinasterol, avenasterol and epifungistreol), and 85% of the
sterol pool was in a conjugated form. More interestingly, there were major differences in the
sterol composition of the six ecologically diverse insect species (a beetle, three hemipteran phloem
feeders, and two dipteran gall formers) associated with S. a/tissima. For example, cholesterol was
not detected in the two gall formers but was found at trace levels in the beetle (1% of the total
tissue sterol profile), at intermediate levels in the hemipteran treehopper (40%), and at high
levels in one of the aphids (90%). However, in the other aphid species, cholesterol levels were low
(17% of the total tissue sterol profile). This variation in cholesterol profile highlights different
sterol metabolic abilities among insects that share a similar host plant and, in the case of the
aphids, indicates that even closely related insects may have radically different sterol metabolic
capabilities. This could reflect adaptive changes in the genes involved in sterol metabolism, which
has been well illustrated in two closely related flies, D. melanogaster and D. pachea (85).

These results may also reflect differences in the sterol profile of vegetative tissue and phloem.
Phloem sterol profiles have now been examined in four different plant species; in contrast to veg-
etative tissues, cholesterol tends to be the dominant sterol in the phloem (10). This might explain
the high cholesterol level in one of the aphid species and perhaps suggests that the other aphid
species may be feeding on tissues other than phloem (138). An additional point about sterols in
phloem is that they can exist in three forms—free, conjugated to fatty acids, or conjugated to
sugars—with conjugated sterol making up at least two-thirds of the total sterol pool (10). Glyco-
sylated sterols would be soluble in the phloem, while free sterols and fatty acid—conjugated sterols
would likely be bulk transported using a carrier protein. How conjugation affects sterol use by
insects has not been examined, but we suspect that conjugated sterols can be cleaved because most
insect herbivores synthesize and release esterases (e.g., sterol O-acyltransferase and Magro) and
glycosidases into the midgut lumen (131).

Insect symbionts can also impact insect sterol nutrition and use. For example, the Janson
et al. (67) study found differences in the sterol profile of the two dipterans that produce galls on
S. altissima (67). One of these (Asteromyia carbonifera) showed sterol metabolites that closely
matched the sterol profile of its fungal symbiont. The other (Eurosta solidaginis), which does not
have a fungal symbiont association, showed sterol profiles similar to the vegetative tissue of S. a/-
tissima. Consistent with the limited sterol metabolism in dipteran species (as discussed above),
these data suggest that A. carbonifera eats its fungal symbiont (mycetophagy), while E. solidagi-
nis eats plant vegetative tissues. Furthermore, given that cholesterol was not recovered in either
species, these aphids likely do not use 20-hydroxyecdysone as their molting hormone. Additional
examples of fungal symbionts aiding in sterol nutrition have recently been shown, including for
grape berry moths (94), anobiid beetles (101), brown planthoppers (145), rice planthoppers (105),
and two weevils (13). In contrast, Thompson et al. (132) showed that the xylem-feeding wood-
wasp Sirex noctilio, which has a symbiotic fungus, does not assimilate fungal sterols. Rather, three
derivatives (e.g., cholestanol, cholestan-3-one, and cholest-4-en-3-one) were found in S. noctilio.
These three derivatives are rarely observed in insects or plants in nature, but they do occur in to-
bacco plants expressing the 3-hydroxysteroid oxidase gene from an Actinomyces spp. bacteria (58).
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S. noctilio contains a rich bacterial flora, including Actinomyces spp. (1). Perhaps these bacteria,
which mostly reside in the gut lumen, provide metabolic enzymes that generate the atypical sterols
in S. noctilio. On a related note, all insects are colonized by a group of bacteria (34) that are generally
incapable to synthesizing sterols (26). However, we currently know very little about the role that
bacterial flora (especially those in the midgut lumen) might play with respect to sterol metabolism.

Predator Foraging Behavior

Predaceous insects generally are not thought to be limited by sterols, as cholesterol is the domi-
nant sterol in most animals (11). Recently, though, Ugine et al. (135) showed that the sevenspotted
lady beetle (Coccinella septempunctata) grew and developed normally on an all-prey diet but suffered
a complete loss of fitness (spermatogenic failure). This was a function of feeding exclusively on
pea aphids, which have very low tissue sterol content. However, fitness was restored by feeding
on plants or eating phytosterols or cholesterol. Thus, reproductive failure was clearly caused by a
sterol deficiency in the male. With respect to male reproduction, sterols are critical for membrane
remodeling when each syncytial spermatid is individually assembled into its own plasma mem-
brane during spermatogenesis (106). In addition to a deficit of dietary sterols, defects in sterol
trafficking may reduce the supply of sterols to important insect tissues. If sterol trafficking to the
testes is defective, then spermatogenesis would be negatively affected (91, 141).

Lady beetles also demonstrated a state-dependent sterol-specific appetite and redressed their
sterol deficit by feeding on plant foliage. The proximate forces that create omnivores out of car-
nivores have long puzzled ecologists, and this elegant study shows that sterols might be a key
factor driving omnivory more broadly in insects. Pollen feeding in the omnivorous lady beetle
Coleomegilla maculata also increases fecundity, and sterols have been implicated as the mechanism
(112). Finally, cholesterol obtained through adult nutrition has been shown to impact fitness (via-
bility) in a synovigenic parasitoid (95). A key implication for all of these species is that cholesterol
plays an important role in spermatogenesis (91).

APPLIED IMPLICATIONS
Exploiting Sterol Constraints as a Novel Strategy to Control Insect Pests

Pesticide resistance from overuse is an important issue, as is a pesticide’s lack of target specificity.
The inability of insect herbivores to synthesize sterols, combined with the constraints on their
ability to use particular types of sterols and steroids, can be exploited to develop new insect pest
control strategies. A sterol-based approach also has the benefit of being target specific.

The disruption of biochemical pathways in the conversion of phytosterols into cholesterol in
insect herbivorous pests has been heavily studied, and many inhibitors were discovered in the
1990s (124, 126). These substrates block enzymatic reactions by competing with phytosterols and
subsequent metabolites, but the specific mode of action remains unknown, in large part because of
a lack of genetic information. However, high-throughput screening and current molecular biol-
ogy techniques are providing opportunities to identify the genes involved in sterol metabolism
and screen for new compounds (19, 71, 78). For example, these methods helped identify
SCP-2 inhibitors with high larvicidal activities in mosquitos and lepidopteran insects (36, 76,
78, 86, 150). These compounds disrupt the regular exogenous sterol supply for insects and
have low cytotoxicity in mammals. Among these, a-mangostin—derived from the tropical fruit
mangosteen—exhibits a promising future as a new organic pesticide (77, 86). NPCl1b, the key
factor in dietary sterol absorption, is another good target to be exploited, and the inhibitors for
NPCILI (the homolog in mammals) are now used as cholesterol-lowering agents in humans
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(152). Moreover, computer-aided exploration of proteins related to sterol metabolism can facili-
tate the design of novel pesticides (90, 150).

Alternatively, it might be possible to modify plant sterol and steroid profiles to control insect
herbivore pests (68). Studies have suggested that it is not necessary to eliminate all phytosterols to
generate genotypes that are resistant against insect pests, which is important because a minimum
level of typical phytosterol is required for essential physiological functions in plants (18, 19, 70).
Instead, modifying the ratio of sterols or steroids beyond a particular threshold can significantly
inhibit insect population growth (3). Such an approach is environmentally friendly, with minimal
effects on the nontarget species (and can work in concert with integrated pest management strate-
gies). The major pests in any given agricultural system are usually predictable, and their dietary
sterol requirement can generally be identified by comparing the insect tissue sterol profile to that
of their typical host plant(s) and confirmed using artificial diets. With this information in hand,
crop plants can be genetically modified to express sterols that do not meet the requirements of
the pest insect.

Insects as Model Organisms to Understand Sterol Biology in Vertebrates,
Including Humans

Insects and C. elegans share most of their basic sterol trafficking functions with vertebrates, and
both insects and C. elegans are often used as models for studying sterol biology in animals. Ad-
ditionally, compared to vertebrates, insects and C. elegans have several traits in their favor. These
include short generation time and high fecundity, as well as the fact that they are generally less
expensive to feed and maintain. Moreover, both are highly amenable to sophisticated genetic ma-
nipulations, which provide more opportunities for exploring sterol nutrition and homeostasis from
a functional genomics perspective. However, in our opinion, insects have some unique advantages
as a model system in studying sterol biology. First, the nutritional requirements of insects and
the underlying molecular basis largely resemble those of vertebrates (22, 52). Second, C. elegans
lacks fat-storing adipose cells; instead, they primarily store fat in epidermal cells (100). This is
in contrast to insects and vertebrates, which have analogous adipose tissues (for insects, the fat
body) where cholesterol and other fats are stored (107, 121, 122). Moreover, there is no good syn-
thetic food media for C. elegans, in contrast to insects (52). The use of synthetic food is critical for
investigating trace nutrients, like sterols, and is especially important for studying nutrient inter-
actions, as exemplified by Drosophila (113). However, we recognize that every model system has its
limitations, and insect models are no exception. We also recognize that candidate factors initially
identified in insects will need to be verified in vertebrates, including humans.

PERSPECTIVES AND FUTURE DIRECTIONS

Great progress has been made in insect sterol biology since Hobson (59) first discovered that
insects were sterol-auxotrophs. However, many questions remain. In this section, we outline ar-
eas that we feel are particularly deserving of attention. First, the genes involved in phytosterol
metabolism have yet to be fully discovered. Lepidopteran larvae are good organisms for this re-
search, but a current problem is that they are not sensitive to RNAi, which makes confirmation
of gene function difficult. However, CRISPR/Cas9 allows functional genetic work on caterpil-
lars (151), and in vivo research on insect sterol nutrition is expected in the near future. Second,
sterol levels are tightly regulated in the insect body, partially through NPC1b. Moreover, flies
actively expel excess sterols from their cells (122). However, the mechanisms governing these re-
verse transportation processes are not well understood. Third, given recent evidence that sterol
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nutrition mediates interactions between bacterial symbionts, hosts, and pathogen agents, partially
through the competition for sterol nutrients (23, 57, 108), more attention should be directed to-
ward understanding the mechanisms by which sterols facilitate these interactions. Fourth, some
insects (e.g., D. melanogaster larvae) can selectively allocate different sterols to particular tissues
(e.g., cholesterol to the central nervous system). Understanding the molecular mechanism by
which this occurs could lead to the development of target-specific control agents. For a range
of Drosophila species, which are emerging pests for the berry industry and are insensitive to the
dysfunction of phytosterol metabolism, such an approach has exciting potential. Addressing these
collective gaps will allow us to more fully appreciate insect sterol nutrition and potentially lead to
broader practical impacts.

1. Insects use sterols (amphipathic molecules) in three critical ways: (#) as structural compo-
nents in the cellular membrane, () as precursors to steroid hormones, and () as signaling
molecules.

2. Cholesterol is the most common sterol reported in insects, butit occurs in very low levels
in plants and is absent in fungi.

3. Insect herbivores produce cholesterol by metabolizing phytosterols, but the degree of
conversion efficiency can differ between even closely related species.

4. HR96 is the master regulator of dietary sterol absorption, esterification, and efflux in
insects.

5. NPCI1b transfers dietary sterols into enterocytes in most insects except basal hemipter-
ans (e.g., aphids, whiteflies, psyllids, and planthoppers).

6. NPCla, NPC2, and SCP2 regulate intracellular sterol trafficking, while lipoproteins in
the hemolymph shuttle sterols between organs (e.g., the midgut and the fat body).

7. Sterol nutrition mediates plant-insect interactions, sometimes facilitated via bacterial
and fungal symbionts, and can drive predaceous insects to omnivory.

8. Insect sterol metabolic constraints can be exploited to control economically important
insect pests and better understand sterol biology in mammals, including humans.
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