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Summary

The incorporation of resistance genes into wheat commercial varieties is the ideal strategy to combat 

stripe or yellow rust (YR). In a search for novel resistance genes, we performed a large-scale genomic 

association analysis with high-density 660K single nucleotide polymorphism (SNP) arrays to 

determine the genetic components of YR resistance in 411 spring wheat lines. Following quality 

control, 371,972 SNPs were screened, covering over 50% of the high-confidence annotated gene 

space. Nineteen stable genomic regions harboring 292 significant SNPs were associated with 

adult-plant YR resistance across nine environments. Of these, 14 SNPs were localized in the 

proximity of known loci widely used in breeding. Obvious candidate SNP variants were identified in 

certain confidence intervals, such as the cloned gene Yr18 and the major locus on chromosome 2BL, 

despite a large extent of linkage disequilibrium. The number of causal SNP variants was refined using 

an independent validation panel and consideration of the estimated functional importance of each 

nucleotide polymorphism. Interestingly, four natural polymorphisms causing amino acid changes in 

the gene TraesCS2B01G513100 that encodes a serine/threonine protein kinase (STPK) were 

significantly involved in YR responses. Gene expression and mutation analysis confirmed that STPK 

played an important role in YR resistance. PCR markers were developed to identify the favorable 

TraesCS2B01G513100 haplotype for marker-assisted breeding. These results demonstrate that 

high-resolution SNP-based GWAS enables the rapid identification of putative resistance genes and 

can be used to improve the efficiency of marker-assisted selection in wheat disease resistance 

breeding.
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Introduction

Stripe rust or yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) is an important foliar 

disease that has been associated with up to 100% yield losses in wheat (Chen, 2014). The 

incorporation of resistance genes into commercial varieties is the ideal strategy to combat YR. With 

our gradually improved understanding of “durable resistance”, greater emphases are being placed on 

adult-plant resistance (APR) or high-temperature adult-plant resistance (HTAPR), which are affected 

by actual growth stage and temperature (Niks et al., 2015). Quantitative genetics analyses have shown 

that APR is usually controlled by multiple inherited loci (Chen, 2013). The best-known Pst-APR 

genes are Yr18, Yr36, and Yr46, which confer a degree of resistance to multiple races and have been 

cloned (Fu et al., 2009; Krattinger et al., 2009; Moore et al., 2015). Studies on the molecular genetics 

of APR have indicated that there is more than one model for the mechanism of durable resistance 

(Brown, 2015). Thus, it is vital for researchers and breeders to understand the genetic basis of stripe 

rust resistance in current elite breeding populations and continuously search for novel genes.

However, quantitative resistance is based on multiple loci, each with a small effect, thus increasing 

the difficulty of identification. The large genome size and allopolyploidy of common wheat result in 

complex quantitative inheritance of APR and cause slow progress in breeding for APR 

(Sánchez-Martín and Keller, 2019). With important advances in high-throughput sequencing and 

wheat genomic sequencing, large numbers of molecular markers have been developed that facilitate 

the progress of more efficient mapping techniques (Juliana et al., 2019). In particular, genome-wide 

association studies (GWAS) can identify associations between phenotypic variation and nucleotide 

polymorphisms using a diverse population panel (Bazakos et al., 2017). As numerous natural allelic 

variations can be simultaneously detected in a single study and a large number of historical 

chromosomal recombination events occur over multiple generations of natural populations, GWAS is 

becoming a powerful tool to dissect the genetic basis of complex agronomic traits and identify 

potential causal genes (Xu et al., 2017).

On the other hand, the identification of causal genes that underlie agronomic traits directly from 

GWAS results remains difficult. First, population genetic structure can limit the detection of rare 

allele variants and occasionally generate false associations between phenotype and non-causal genes A
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(Bazakos et al., 2017). Although several statistically robust models have been built, such as 

population structure assessment and correction, false positives caused by population structure may not 

be entirely eliminated (Kang et al., 2008; Yu et al., 2006). To address this problem, another 

independent population can be reconstructed to validate the resulting marker–trait associations 

(MTAs) (Lipka et al., 2015). Second, a large extent of linkage disequilibrium (LD) can give rise to a 

single LD block that displays a remarkable association with the trait of interest but harbors a variety 

of candidate genes (Schaid et al., 2018). Typically, the extent of LD in self-pollinating crops spans 

several hundred kilobases (kb), as documented in rice (Huang et al., 2011), and can occasionally 

reach megabases (Mb), as in wheat (Cheng et al., 2019; Wu et al., 2020). Thus, with high-level LD, 

further investigation is necessary to conclusively identify the causal gene(s). Recently an efficient 

GWAS method using whole-genome sequencing (WGS) was developed in rice for the rapid 

identification of trait causal genes without the need for additional experiments, based on the estimated 

functional importance of each nucleotide polymorphism (Yano et al., 2016). Similar practices have 

been used in wheat. For example, four stem rust resistance genes were rapidly cloned through a 

combination of association genetics and R gene enrichment sequencing (AgRenSeq) (Arora et al., 

2019). Exome association mapping provided another route for the detection of functional SNP 

variants in wheat leaf rust resistance (Liu et al., 2020). In addition, high-density SNP array analysis 

has also become an alternative approach for the refinement of candidate genes. The updated version 

of the wheat 660K SNP array includes 660,009 SNP sites distributed over all chromosomes and 

encompassing the majority of genes (Sun et al., 2020). It has been widely used in many genetic 

studies that are focused on gene fine-mapping and cloning in China (Li et al., 2019; Rasheed et al., 

2017).

Recently, members of the post-Yr26-virulent races group (herein referred to as post-V26) have become 

the most prevalent forms of Pst that threaten wheat production in China (McIntosh et al., 2018). 

Unexploited wheat germplasm is a potentially valuable source of genetic diversity that can enhance 

and enrich breeding germplasm with needed traits for the sustainable improvement of modern 

cultivars (Hao et al., 2011; Zhuang, 2003). Here, a diversity panel of 411 advanced breeding lines were 

collected from International Maize and Wheat Improvement Center (CIMMYT) and International 

Centre for Agricultural Research in the Dry Areas (ICARDA) bread-wheat breeding programs, which A
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were expected to have effective and novel resistance genes, thus making them ideal for association 

mapping. Then they were evaluated for their responses to post-V26 races in seedling and in 

multi-location field trials with plants either artificially or naturally inoculated over three cropping 

seasons. Subsequently, we used GWAS to dissect the genetic architecture of these lines and detect 

QTL associated with variation in stripe rust resistance. Using high-resolution SNPs from the wheat 

660K SNP array, resequencing data, and PCR-based sequencing data, we attempted to refine the 

number of causal alleles based on analysis of another independent validation panel of over 1000 

wheat accessions, as well as analysis of the estimated functional importance of each nucleotide 

polymorphism. Our study describes promising results that will accelerate marker-assisted selection for 

the improvement of stripe rust resistance in Chinese wheat breeding programs and delineate 

prospective targets for the cloning of novel resistance genes.

Results

Genotyping by SNP array reveals abundant genetic diversity

After filtering out low-quality SNP markers, a total of 378,441 SNPs were retained and used for the 

following analyses. A position could be assigned to 371,972 SNPs, which were distributed over each 

of the 21 chromosomes (Figure S1a; Table 1; Table S2). Marker density varied among chromosomes 

with a minimum of 7.19 markers per Mb on chromosome 4D and a maximum of 53.54 markers per 

Mb on chromosome 3B (Table 1; Figure S1b). In addition, these filtered SNPs were used in a BLAST 

analysis of the ‘Chinese Spring’ reference genome to analyze and predict their effects on gene 

structure and function. BLAST analysis revealed that out of the 378,441 SNPs, 41,588 (10.99%) were 

intron variants and 162,080 (42.82%) mapped within 2 kb upstream or downstream of genic regions. 

The remaining SNPs were located in gene exons, with 28,728 (7.59%) of these SNPs causing 

non-synonymous mutations. Finally, we identified the SNPs associated with 57,833 genes, which 

accounted for 53.6% of all high-confidence genes, and found that 36,042 genes (62.32%) possessed at 

least two SNPs (Table S3; Figure S1c).

Genetic diversity was analyzed using markers with known chromosomal positions. Overall, the 

spring wheat diversity panel showed relatively high genetic diversity, with He and PIC values of all 

genomes of 0.69 and 0.28, respectively (Table 1; Figure S1d, e). Although the D genome possessed A
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fewer markers than the A and B genomes, there was little difference in genetic diversity among the 

three genomes. The mean values of He and PIC for the three sub-genomes were 0.68–0.70 and 0.27–

0.28, respectively (Table 1). The genetic diversity results of the validation panel of 1,045 accessions 

with 660K SNP array data are provided in Table S4. Approximately 75% of the markers displayed 

PIC values exceeding 0.20, demonstrating the informativeness of these markers.

Estimation of population structure and linkage disequilibrium

According to the ΔK method of Bayesian clustering, hierarchical clustering, kinship analysis, 

phylogenetic tree construction, and PCA analyses, geographical origin (Africa and America) and 

historical era (old landraces to modern elite lines) were the two major factors that determined the 

classification of diversity in this panel. The population of 411 accessions was first structured into two 

main sub-population groups based on geographical distribution (herein referred to as Sp1 and Sp2) 

(Figure 1a-e). Sp1 was frequently associated with Mediterranean countries such as Morocco and 

Egypt, whereas Sp2 predominantly included accessions from countries in America, South Asia, and 

Oceania, such as Mexico, the United States, India, and Australia. In view of different eras, Sp1 and 

Sp2 were further subdivided into two and three distinct subgroups (herein referred to as Sp1-1, Sp1-2, 

Sp2-1, Sp2-2, and Sp2-3), respectively (Figure 1c-e). Sp1-1 consisted of 68 early ICARDA varieties, 

and Sp1-2 included a mixture of 176 modern varieties and breeding lines. Sp2-1, Sp2-2, and Sp2-3 

contained a mixture of 88 modern varieties and breeding lines, 37 genetic stocks, and a mixture of 42 

landraces and earlier varieties. The STRUCTURE membership coefficients revealed a high degree of 

admixture in a large number of accessions, particularly among cultivars and modern breeding 

materials, which was mainly observed in a number of lines from other breeding programs in each 

cluster. This result is consistent with the shuttle breeding of CIMMYT and ICARDA and the frequent 

germplasm exchange that characterizes modern wheat breeding worldwide.

LD analysis was assessed based on 717,701,068 pairwise comparisons of 371,972 SNPs, and 

pairwise LD was estimated using the squared-allele frequency correlation (r2). A plot of the LD 

estimates (r2) as a function of physical distance in Mb indicated that there was a clear decay of LD 

with physical distance (Figure S2). Comparison of LD among sub-genomes and chromosomes 

showed that the LD decay was varied. Overall, the average LD decay distance for the whole genome 

was approximately 3.2 Mb. LD decayed faster in the D genome (1.3 Mb) than in the A (2.6 Mb) and A
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B (5.5 Mb) genomes (Figure S2b-d). We believe that faster LD decay in the D genome is compatible 

with wheat evolutionary history (Dubcovsky and Dvorak, 2007). The D genome was the last be 

incorporated into common wheat and was therefore subjected to less artificial selection than the A and 

B genomes. Several haplotype blocks harboring favorable alleles or combinations of alleles tend to be 

stable, and the LD decay distance is increased through artificial selection-driven evolution. For 

example, in this study, the LD decay of all chromosomes ranged from 0.62 Mb to over 7.45 Mb, 

indicating that different genomic regions have been subjected to various artificial selections and that 

the haplotype diversity is expansive in this diversity panel (Figure S2).

Phenotypic variation in response to stripe rust

In the stripe rust resistance tests with six Pst races at the seedling stage, the infection type (IT) 

distributions skewed toward susceptible scores with mean IT values of 7.6–8.1 on a 0–9 scale (Figure 

S3; Table S5). In the spring wheat diversity panel assessed here, because less than 5% of individuals 

exhibited resistant reactions (IT 0–3) to each of the tested Pst races, the seedling phenotypes were not 

used for GWAS analysis to minimize false positive errors. By contrast, greater stripe rust resistance 

was observed in the field tests at the adult-plant stage, although the susceptibility checks always 

indicated high rates of infection. The IT and DS distributions were skewed towards low values in all 

resistance trials, ranging from 4.4 to 4.9, and 30.0% to 34.7%, respectively (Figure S4a, b; Table S5). 

IT and DS values were continuous in all environments, indicating that the effects were conferred by 

APR and the responses were quantitative. Pearson’s correlation coefficients were 0.78–0.95 for IT 

and 0.88–0.96 for DS across all environments (Figure S5a, b). Such significant correlations (p < 

0.0001) indicated that stripe rust responses were consistent across the environments and most likely 

same resistance genes conferred resistance in all environments. As expected, the correlation between 

IT and DS was highest within the same environment, ranging from 0.80 to 0.91 (Figure S4c). The 

broad-sense heritability H2 was calculated as 0.48±0.07 and 0.55±0.07 for the IT and DS data, 

respectively (Table S5). The extent to which stripe rust responses of the 411 different accessions were 

influenced by population structure was analyzed, and the accessions in Sp1 generally displayed more 

resistance than those in Sp2 (Figure S4d, e).

GWAS reveals several significant SNPs associated with known stripe rust resistance lociA
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

The stripe rust responses including IT and DS values of the 411 accessions across nine field 

environments and the best linear unbiased predictions (BLUPs) were used in association tests based 

on univariate linear mixed model analysis. Based on the suggested threshold P-value < 2.90×10-4, 

358–801 significant SNP–trait associations were detected. In order to identify stable loci, only QTL 

associated with APR within at least seven environments including BLUP were considered as 

high-confidence QTL, which filtered the common significant SNP–trait associations down to 292 

(Table S6). For convenience, tagged SNPs for each QTL were selected based on those exhibiting the 

strongest association with stripe rust responses alongside the smallest SNP-associated P-value, the 

largest phenotypic variance explained (R2), and the largest number of environments in which 

significant trait associations were detected. As a result, a total of 19 QTL regions were identified on 

chromosome arms 1AL, 1BL, 2AS, 2AL, 2BS, 2BL, 3AL, 3BS, 3BL, 4BS, 4BL, 6BS, 6BL, 7AL, 

7BL, and 7DS (Figure 2a-j; Figure S6a-j; Figure S7). The frequency of SNP marker alleles associated 

with resistance ranged from 0.06 to 0.93, although marker alleles are not necessarily indicative of 

functional resistance alleles (Table 2). The phenotypic variation explained (PVE) by individual QTL 

was 1.5–9.6%, and the total value of PVE contributed by all QTL was 57.8–74.1%. Of the 19 

assigned QTL, five loci were potentially novel based on their unique chromosomal locations, 

determined by referring to the consensus and physical maps, and two of these had been mapped in our 

previous studies. Among the other 14 QTL, nine were co-located with characterized Yr genes, namely 

Yr29 on chromosome arm 1BL, Yr17 on 2AS, Yr32 on 2AL, Yr30 on 3BS, Yr80 on 3BL, Yr78 on 

6BS, Yr75 on 7AL, Yr39 or Yr2 on 7BL, and Yr18 on 7DS (Figure 2a-j; Figure S7; Table 2). The 

remaining five QTL identified in this GWAS were in agreement with the candidate regions reported 

in previous QTL mapping or GWAS studies (Figure S7; Table 2). Moreover, YrNP63-2BS, 

YrSnb.1-2BL, YrRC-4BL, and YrSnb.2-6BL had been mapped using CIMMYT-derived bi-parent 

populations in our previous studies (Wu et al., 2017, 2018a; Zeng et al., 2019).

Haplotype and candidate gene analysis for the cloned gene Yr18

To verify the accuracy, reliability, and validity of these multi-environment significant SNPs, the 

cloned locus Yr18 was selected as an example to demonstrate the a priori experiment of haplotype 

analysis and revalidation. At the proximal end of the short arm of chromosome 7D, there was a peak 

close to Yr18. A total of 26 polymorphisms were mapped to a candidate region from 47.379 Mb to A
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47.711 Mb (332 kb) estimated using pairwise LD correlations (r2 ≥ 0.6) (Figure 3a-c). Among these 

polymorphisms in the candidate region, only one polymorphism was classified as G1 (AX-94713206) 

and G3 (AX-111197303), respectively, no G2 polymorphisms were found, two polymorphisms 

(AX-89378255 and AX-109857040) were classified as G4, and the others were classified as G5. The 

G1 SNP AX-94713206 corresponded to a C to T change in the twelfth exon of the 

TraesCS7D01G080300 ORF, which caused a tyrosine to histidine replacement (Figure 3d; Table S7). 

TraesCS7D01G080300 encodes an ATP-binding cassette (ABC) transporter G family protein that is 

identical to the resistance allele Yr18res (Krattinger et al., 2009). Although the SNP AX-109857040 is 

located in an intron, it was significantly associated with resistance, which is consistent with previous 

studies (Krattinger et al., 2013). Due to the Yr18res 3-bp deletion in the eleventh exon, the SNP 
AX-95209823 (C/G) could not distinguish this site accurately, and thus it was not a significant MTA. 

It should be noted that there were two more significant MTAs outside the Yr18 coding region. The 

accessions carrying haplotype 1 (we herein refer to the haplotype corresponding to Yr18res as ‘1’ and 

the other as ‘2’) showed more resistance than those carrying haplotype 2 (Figure 3e), which agreed 

with previous studies concerning the Yr18 locus. The discriminatory effectiveness of these SNPs was 

validated in the second independent diversity panel of 1045 wheat accessions, and they performed 

comparably to gene-specific SNPs (Figure 3e). In addition, a pair of near-isogenic lines (Hap1: +Yr18, 

Hap2: −Yr18) in the Avocet S variety background showed different responses to stripe rust in the field 

(Figure 3f; Table S8). These results indicate that the candidate genes analysis method can identify 

trait-associated genes or DNA variants, and, furthermore, that combinations of significant MTAs can 

help to identify favorable haplotype(s) and improve the efficiency of marker-assisted selection in 

wheat breeding.

Identification of a novel candidate region

Similarly, we analyzed the highest peak on chromosome 2B, which was mapped close to YrSnb.1 

identified in our QTL mapping. The YrSnb.1 region was previously shown to span an interval of 2.2 

cM corresponding to less than 4 Mb (Zeng et al., 2019). In this GWAS panel, LD analysis within the 

YrSnb.1 region was initially from 707.418 Mb to 712.236 Mb (4.8 Mb) (Figure 4a). As an 

experimental control and to more accurately identify candidate regions, GWAS was performed on the 

independent validation panel, following which the above-mentioned candidate region was mapped A
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from 707.668 to 708.346 Mb (612.9 kb) (Figure 4b). Association analysis was also performed in the 

612.9 kb region using the set of 63 resequencing common wheat genotypes (Figure 5a; Table S9). 

There were 45 polymorphisms from the SNP array and over 700 polymorphic DNA variants from the 

resequencing data in this region, covering all 12 candidate high-confidence (HC) genes (Figure 5b; 

Table S7). Most of the polymorphisms with significant p-values surrounded three genes 

(TraesCS2B01G512900, TraesCS2B01G513000, and TraesCS2B01G513100). Further significant 

sequence variations were not identified the coding regions of TraesCS2B01G512900 and 

TraesCS2B01G513000 except TraesCS2B01G513100. Among these, three polymorphisms 

(AX-111730867, Rv-680, and AX-108806204) that were significantly associated with stripe rust 

responses (−log10P ≥ 4.85) were classified as G1, all of which were located within the gene 

TraesCS2B01G513100 (Figure 5e). These SNPs (AX-111730867, Rv-680, and AX-108806204) 

changed a G to an A, a C to a T, and a G to an A, causing glutamate to lysine, alanine to valine, and 

alanine to threonine substitutions, respectively (Table S7). In addition, two polymorphisms were 

classified as G2 (AX-110906149 and AX-109929582) and G3 (AX-95654572 and AX-110363517), 

whereas no G4 polymorphisms were observed and the others were classified as G5 (Figure 5e). The 

two G2 SNPs AX-110906149 and AX-109929582 were both located in the promoter region of 

TraesCS2B01G513000 and likely affect gene expression regulation (Figure 5d; Table S7). The G3 

SNPs AX-95654572 and AX-110363517 were located in the 3′ downstream regions of the genes 

TraesCS2B01G512900 and TraesCS2B01G513100, respectively (Figure 5c, e; Table S7). 

Interestingly, TraesCS2B01G513100, TraesCS2B01G513000, and TraesCS2B01G512900 all encode 

serine/threonine protein kinases (STPKs). The amino acid sequences of these STPKs were compared 

with those in other sub-genomes. The allelic variations in different genomes are presented in Figure 

S8 and show that the STPK sequences in the B genome are obviously different from those in the A 

and D genomes.

Validation of the causal genes

We subsequently analyzed the expression levels of all 12 candidate genes using a qRT-PCR assay in 

wheat flag leaves at the adult-plant stage. We found that only the positive allele of 

TraesCS2B01G513100 in cultivar XZ9104 was up-regulated six-fold and fourteen-fold by Pst 

inoculation at 24 h and 168 h compared with the negative allele in cultivar AvS (Figure 5h). No other A
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genes were differentially expressed between AvS and XZ9104 at any time point (Figure 5f, g and 

Figure S9). RNA-seq data indicated that TraesCS2B01G513100 was expressed in flag leaves, spikes, 

and awns, which is consistent with the stripe rust resistance observed at the adult-plant stage (Figure 

S10). In mutation analysis, eight mutant lines were selected: Kronos3186 and Kronos3312 with a 

premature stop codon in TraesCS2B01G512900 and TraesCS2B01G513000, respectively; and 

Kronos1064, Kronos2338, Kronos3557, Kronos3545, Kronos2969, and Kronos2619, which carry 

missense mutations in TraesCS2B01G513100. Following the assessment and comparison of these 

mutants’ responses to stripe rust, only Kronos1064 and Kronos2338 exhibited greater susceptibility 

than wild type (Figure 5i, j; Table S10). These results indicate that TraesCS2B01G513100 is the most 

likely candidate gene involved in stripe rust resistance.

Association analysis of the STPK gene and identification of allelic variations

To identify more genetic variations, TraesCS2B01G513100 was resequenced in 64 accessions with 

opposite extreme phenotypes and six NILs derived from the HIFs (Table S8). The sequenced region 

harbored a 3130-bp genomic DNA fragment corresponding to the full-length TraesCS2B01G513100 

locus, including its exons, introns and part of primer region and UTRs. In total, 18 SNPs and two 

insertion/deletions (indels) were identified (Figure 5e and Table S11). An MLM-based association 

analysis was performed between all SNPs/indels and the previously assigned stipe rust responses for 

each accession. One new, nonsynonymous SNP identified (Rv-686) in the TraesCS2B01G513100 

coding region was highly associated with YR (P < 7.69E-07) (Figure 5e; Table S11).

Based on the LD distance of 612.9 kb, the candidate region was divided into five blocks, which 

formed four haplotypes (herein referred to as Hap-1–4). Coupled with the estimation of candidate 

gene analysis, Hap-1, Hap-2, Hap-3, and Hap-4 had frequencies of 44.88%, 16.34%, 14.63% and, 

30.97%, respectively, within the GWAS panel (Figure 5k). Estimation of the contribution of each 

haplotype towards phenotype variation revealed that Hap-1 and Hap-2 had the greatest effect on 

disease resistance compared with the susceptibility of Hap-4 and Hap-3 (Table S1). Taken together, 

these results indicate that “TGCGGT” comprises the core of the favorable allele combination and 

likely underlies the effect on stripe rust resistance. Hap-1 and Hap-2 were then combined into Hap-A, 

and Hap-3 and Hap-4 were combined into Hap-B. The combination “TGCGGT” was directly or 

indirectly related to the gene TraesCS2B01G513100, and the correlating SNPs were developed into A
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derived cleaved amplified polymorphic sequences (dCAPS) and kompetitive allele specific PCR 

(KASP) markers for assisted selection in future resistance breeding 

(https://galaxy.triticeaetoolbox.org/; Table S12). In addition, the other HIFs from the ZM9023/Snb"S" 

cross were classified into two major groups using the above-mentioned PCR markers that distinguish 

different haplotypes, and the responses of these two groups to stripe rust in the field were assessed 

(Figure 5j, l). The HIFs carrying the “TGCGGT” haplotype displayed greater stripe rust resistance, 

indicating the efficiency of marker-assisted selection in wheat resistance breeding. Moreover, 

TraesCS2B01G513100 is a promising target for further functional validation using reverse genetics 

approaches such as virus-induced gene silencing, overexpression, or transgenic analyses.

Discussion

Multi-processing environments facilitate the excavation of robust resistance

Many previous studies have shown that multiple loci are involved in complex quantitative resistance 

(St. Clair, 2010). Wheat stripe rust responses and the resulting phenotypes in the field are consistently 

affected by host resistance levels, pathogen population structure, and weather conditions (Chen and 

Kang, 2017). Therefore, the ability of resistance-associated loci to provide protection against disease 

is dependent on the coevolution between the host and the Pst population in the field. Effective disease 

resistance also depends on the application of resistance-associated loci in integrated disease control 

practices (Nelson et al., 2018). Dissecting the stability of resistance by combining multi-processing 

environments with MTAs can provide insights into the long-term durability of resistance-associated 

loci. From this perspective, the loci characterized as imparting environment-dependent resistance 

would not be suitable for future marker-assisted breeding due to the considerable risk of disease 

(Bazakos et al., 2017). In our study, a diversity panel of wheat accessions was evaluated for stripe rust 

responses across multiple environments. In order to eliminate environmental interference as much as 

possible, we also used a linear mixed model to estimate the BLUPs. As strict control measures within 

the experiment to identify stable loci, only 33.8% (292) of the resistance-associated loci in this 

GWAS panel were retained, and some of them were co-localized at several previously reported Yr 

genes/QTL regions. As extensively reported in past studies, Yr18, Yr29, Yr30, and Yr78 have been 

widely used in wheat resistance breeding worldwide due to their durability (Rajpal et al., 2016). It is A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

worth noting that these known Yr genes/QTL were not the most significant loci characterized in this 

study, despite the fact that they were detected in almost all environments. The MTAs of major effect 

were located on chromosome 2BL in the proximity of YrSnb.1 identified in our QTL mapping. This 

novel QTL explained the largest phenotypic variation and warranted further investigation.

The combination of association and haplotype analysis permits refinement of candidate 

resistance-associated loci

A common fault of GWAS is the generation of false positive associations due to population structure. 

In this study, an integrated method involving PCA, structure (Q), and a kinship matrix (K) was used 

to perform population structure adjustment and correction, thereby minimizing the false positive rate 

(Yu et al., 2006). Meanwhile, another independent diversity panel comprising a natural population 

was also analyzed to validate the MTA results. The extent of LD is determined by the nature of 

different species and population structure, but it is not invariable. There are differences in LD decay 

among different segments of the same chromosome, with segments located close to the chromosome 

telomeres exhibiting lower LD decay than those close to the centromere. This variation in LD decay is 

highly correlated with the recombination ability of chromosomal segments (Bazakos et al., 2017). 

Therefore, LD decay impacts the positioning of candidate resistance-associated regions, depending on 

whether the significant marker is near the telomeres or the centromere. In this GWAS panel, LD 

varied across chromosomes and sub-genomes, and LD decay ranged from 0.62 Mb to 7.45 Mb. The 

LD decay of the QTL on chromosome 7DS (Yr18) was 332 kb (r2 = 0.6), as this region was distant 

from the centromere. A favorable haplotype carrying gene variants improves the efficiency of 

marker-assisted selection in breeding. The LD decay of the major QTL on chromosome 2BL 

(YrSnb.1) was 4.8 Mb, despite the fact that this region was located at the end of the chromosome. 

Interestingly, the diversity of SNPs and the pattern of LD in this region was different in the validation 

diversity panel, and independent validation enabled the candidate region to be narrowed down to 

612.9 kb (r2 = 0.8). This method greatly reduced the computing workload for haplotype analysis. A 

similar result reported recently detailed how an initial extensive 25-Mb candidate region on 

chromosome 3D was ultimately narrowed down to a 1-Mb region using a validation population (Liu 

et al., 2019). Here, analysis of different haplotypes and phenotypes of over 1500 wheat accessions, 

including those from a natural population as well as breeding lines, facilitated identification of A
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favorable allele core sequences. Furthermore, the correlating SNPs were developed into practical PCR 

markers that can be used to improve the efficiency of marker-assisted selection in wheat stripe rust 

resistance breeding.

High-resolution SNPs enable the prediction of candidate resistance genes

The large extent of LD in wheat makes it difficult to analyze candidate resistance genes. The 

high-resolution SNPs identified using the 660K SNP array covered 57,833 high-confidence genes 

(53.6% of all genes) and provided insights into the functional causal variant(s) underlying stripe rust 

resistance. The method of estimating the functional importance of each nucleotide polymorphism 

serves to predict candidate genes (Yano et al., 2016). First, we identified significant SNPs using 

GWAS and analyzed the LD of the candidate regions containing significant SNPs in different 

diversity panels. Then we extracted information for the candidate genes, including the function of 

polymorphisms, which were validated by their relationships with stripe rust resistance. With this 

approach, as expected, we delimited the cloned candidate gene Yr18 to within 332 kb and successfully 

identified Yr18 as a resistance-associated gene. We similarly analyzed a QTL-based candidate region 

on 2BL and found several functional associations within the coding and promoter regions of causal 

genes. The candidate genes TraesCS2B01G512900, TraesCS2B01G513000, and 

TraesCS2B01G513100 all encoded STPKs, and their amino acid sequences were quite different from 

that of their respective homologs in the A and D genomes. STPK is known to play a role in plant 

defense. For instance, STPK-V, a member of the STPK family in Haynaldia villosa, enhances 

powdery mildew resistance by decreasing the haustorium index dramatically and mediating H2O2 

accumulation (Cao et al., 2011). Although our gene expression and mutation analysis indicated that 

TraesCS2B01G513100 was the most likely candidate resistance gene, TraesCS2B01G512900 and 

TraesCS2B01G513000 should not be disregarded. Resistance genes are generally grouped in clusters 

in plants, and some may play simultaneous central roles in resistance (Kourelis and van der Hoorn, 

2018; Zhao et al., 2016). Therefore, the characterization of these genes using molecular biology 

methods may reveal further molecular mechanisms of stripe rust resistance in wheat.

This study demonstrates the feasibility of predicting causal resistance genes using high-resolution 

SNP-based GWAS in common wheat. In previous studies, allelic variants of Ppd-D1 (chromosome 

2D) and Rht-D1 (chromosome 4D) loci, which were shown to affect plant growth traits during the A
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stem elongation phase, were precisely identified by wheat 90K SNP array-based GWAS (Guo et al., 

2018). Coincidentally, the SNP AX-109665328 was found to associate with Rht-D1 and several 

candidate genes involved in abiotic stress tolerance, such as those encoding WRKY transcription 

factors, which were co-localized in a candidate region identified through wheat 660K SNP 

array-based GWAS (Li et al., 2019). The most effective use of wheat 90K SNP-based GWAS was in 

the identification of the flour-color gene TaRPP13L1 gene that was successfully identified from a 

20-kb candidate region and verified by the functional SNP Excalibur_c5938_1703 (Chen et al., 2019). 

It should be noted that each of the above-mentioned traits is controlled by conserved genes. However, 

there are abundant variations in resistance traits, including their presence/absence in different 

genomes (Arora et al., 2019). From this point of view, the candidate genes considered in this study 

were restricted to those annotated in the Chinese Spring reference genome, and thus other resistance 

genes absent in the reference genome cannot be ruled out. In addition, an inevitable limitation of SNP 

array-based GWAS is that single candidate gene association analysis cannot be performed due to 

insufficient suitable DNA variants within the gene region. Deep next-generation sequencing 

approaches, such as Pan-genome and 10× genomics, or whole-genome resequencing of a diversity 

panel, can overcome this disadvantage. Nevertheless, the haplotype and candidate gene analyses 

reported here reveal promising alleles that function in stripe rust resistance and provide potential 

targets for further functional analysis and inclusion in future wheat resistance breeding.

Materials and Methods

Phenotypic evaluation of stripe rust infection

The association mapping panel used in this study comprised 411 breeding lines from CIMMYT and 

ICARDA (Table S1). An independent diversity panel of 1045 wheat accessions from a global 

collection, a set of 63 common wheat resequencing genotypes (Table S1), and a bi-parent genetic 

population from a cross of Zhengmai 9023 (ZM9023) × Sunbird "S" (Snb "S") were used for 

validation of the significant MTAs. The wheat lines Avocet S (AvS), Mingxian 169 (MX169), and 

Xiaoyan 22 (XY22) were used as the susceptible controls.

Evaluations of seedling resistance to stripe rust were conducted under controlled greenhouse 

conditions. The tested Pst races contained pre-V26 prevalent races, such as CYR32 and CYR33, and A
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post-V26 groups collected from different origins, such as V26/Laboratory (V26/Lab), V26/Sichuan 

(V26/SC), V26/Shaanxi (V26/SX), and V26/Gansu (CYR34). The avirulence/virulence characteristics 

of the races were reported by Wu et al. (2020). Details of inoculation and disease evaluation were 

described previously (Wu et al., 2018b). Wheat accessions AvS and Xingzi 9104 (XZ9104) and Pst 

race V26/Lab were used for gene expression analysis in this study. Xingzi 9104, carrying YrSnb.1, 

displays resistance at the adult-plant stage. Flag leaves inoculated with V26/Lab or sterile distilled 

water (control) at the adult-plant stage were harvested at 0, 24, 36, 48, 72, 96, 144 and 168 h 

post-inoculation (hpi). Time points were selected based on a previous study (Zhang et al., 2012).

Adult-plant resistance (APR) evaluations were carried out at Yangling in Shaanxi province 

(over-wintering region), Tianshui in Gansu province (over-summering region), and Jiangyou in 

Sichuan province (over-wintering region) during three cropping seasons (2016–2017, 2017–2018, 

2018–2019). Detailed methods of plant growth, management, and evaluation have been published 

previously (Mu et al., 2019).

Phenotypic data analyses

For each environment, the arithmetic mean of phenotypic observations was used as the phenotypic 

data. Genotype (411 cultivars and breeding lines) and environment (three years in three locations) 

were treated as random effects in a linear mixed model to estimate the best linear unbiased predictions 

(BLUPs) using the lme4 package in the R 3.5.3 program (Bates et al., 2014). For each trait, each 

single environment phenotypic data set and BLUP data set were used for analysis of variance 

(ANOVA). Since there was no replication in this study, it was not possible to estimate the genotype 

by environment interaction. The broad-sense heritability (H2) estimates for IT and DS were calculated 

across nine test environments using the lme4 package with the formula H2 = VG/(VG + VE), where VG 

and VE represent the genotypic and environmental variances, respectively. Pearson’s correlation 

coefficients (r) of pairwise environments were computed using the Hmisc package to determine the 

consistency of stripe rust responses a different environments.

Genotyping, SNP filtering, and population structure analysis

Wheat leaf samples including 411 breeding lines and 1045 accessions were collected, and DNA 

was extracted using an extraction kit (Invitrogen™, ThermoFisher, Waltham, USA) following the A
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manufacturer’s instructions. Genotyping was performed using the wheat 660K genotyping assay by 

Beijing CapitalBio Technology Company (http://www.capitalbiotech.com). SNP genotype calling and 

allele clustering were processed with the polyploid version of Affymetrix Genotyping Console™ 

(GTC) software. To ensure the quality pretreatment of genotyping data, SNP markers with minor 

allele frequencies (MAF) < 0.05, missing data > 10%, or Hardy-Weinberg Equilibrium (HWE) > 0.01 

were excluded from further analysis. The most up-to-date physical positions of the SNPs were 

obtained from the Triticeae Multi-omics Center website (http://202.194.139.32/). Polymorphism 

information content (PIC) and expected heterozygosity (He), representing two genetic diversity 

parameters, were calculated using a self-written program in Perl. PIC and He values were calculated 

for each SNP marker and each chromosome based on the formulas described in Botstein et al. (1980) 

and Nei (1978), respectively.

Population structure was assessed using STRUCTURE software v2.3.4 with unlinked markers (r2 = 

0). The model was applied without the use of prior population information, and the most likely 

number of subpopulations was determined using a previously described method (Earl and VonHoldt, 

2012). Principal components analysis (PCA) of the population was performed using the software 

GCTA (Yang et al., 2011). The p-distance was used to construct NJ phylogenetic trees with 1,000 

bootstrap replicates using the software MEGA-CC (Kumar et al., 2012). The identity-by-state (IBS) 

relative K-matrix was calculated between pairs of accessions using PLINK (Purcell et al., 2007). Heat 

maps of kinship were generated on the basis of the K-matrix using the pheatmap v1.0.8 R package. 

Genome-wide linkage disequilibrium (LD) analysis for the A, B, and D genomes was performed 

using the software PLINK. LD estimation and LD decay analysis were performed as described in Yu 

et al. (2020). A locally weighted polynomial regression (LOESS) curve was drawn to fit the data 

using second-degree locally weighted scatter plot smoothing in the R program. The confidence 

interval of quantitative trait loci (QTL) was defined based on the intersection of the fitted LOESS 

curve with LD r2 = 0.1.

Genome-wide association analyses

GWAS was conducted using a univariate linear mixed model with GEMMA software (Zhou and 

Stephens, 2012). The P-value threshold was calculated using a modified Bonferroni correction 

(Genetic type 1 Error Calculator, version 0.2) with a suggested threshold of P = 1/Ne (Ne = effective A
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SNP number) (Li et al., 2012). Our results showed that the suggested p-value thresholds ranged from 

1.36 × 10−4 to 9.90 × 10−4 for each chromosome (Table 1), and thus we considered the mean value 

3.23×10−4 as the criterion for genome-wide significance in this study. Significant markers from the 

GWAS result were visualized using a Manhattan plot, and important P-value distributions were 

visualized by a quantile-quantile plot (Q-Q plot), both drawn by the qqman package in R 3.0.3 

(http://www.r-project.org/). The phenotypic variance explained (R2) by significant SNPs was 

evaluated using GCTA software.

Comparisons with previously published Yr genes and QTL

To date, more than 150 permanently or temporarily designated Yr genes and over 300 QTL have been 

described across 21 wheat chromosomes, and most of these are listed in the Catalogue of Gene 

Symbols for Wheat or summarized in integrated genetic maps (Chen and Kang, 2017). To determine 

the relationships between significant loci identified in the GWAS and previously reported Yr 

genes/QTL, we compared the physical locations of these loci based on the Chinese Spring reference 

genome coupled with integrated genetic maps (Cui et al., 2017; Maccaferri et al., 2015). For 

previously reported stripe rust resistance genes/QTL, the closest flanking markers were used to 

generate the confidence intervals reported. Whether the loci identified in the GWAS were novel 

depended on the interval of the haplotype block. 

Revalidation of marker–trait associations, haplotype estimation, and association analysis of the STPK 

gene

To validate the stability and accuracy of significant SNPs located within major QTL regions identified 

in the first diversity panel, the associated SNPs were retested in the extended independent validation 

panel and in a bi-parental genetic population. The second panel was phenotyped across multiple 

environments in field trials and also genotyped with the wheat 660K SNP array. Univariate ANOVA 

was used to analyze MTAs in the R package. The local LD patterns were visualized on the basis of 

the LD squared-allele frequency correlation (r2) estimates between markers using the software 

HAPLOVIEW. Haplotype blocks were identified based on LD, and the effect of each haplotype allele 

was calculated using the lmer function in R software. In addition, 63 common wheat accessions with 

resequencing data were also used for association analysis in the candidate region to validate causal A
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genes (Cheng et al. 2019).

Association analysis of the STPK gene (TraesCS2B01G513100) was conducted on 64 representative 

wheat accessions and six near-isogenic lines (NILs) derived from the heterozygous inbred families 

(HIFs) from a ZM9023 × Snb "S" cross. The STPK gene coding regions (including introns) were 

amplified and sequenced. These sequences were assembled using DNAMAN and aligned using 

AliView (Larsson 2014). Nucleotide polymorphisms, including SNPs and indels, were identified 

(MAF ≥ 0.05) among these genotypes, and their association with the YR responses and pairwise LD 

were calculated with the software PLINK.

Identification of candidate genes by nucleotide polymorphism analysis

High-confidence genes located within the LD block around significant SNPs were used for candidate 

gene analysis based on IWGSC RefSeq v1.0 with gene annotations (IWGSC, 2018). Based on the 

estimated functional importance of each nucleotide polymorphism as described by Yano et al. (2016), 

all the polymorphisms in the candidate region were classified into five groups, referred to as G1–5. G1 

contained significant MTAs in the GWAS (−log10P ≥ the threshold value in this chromosome) that 

putatively caused amino acid conversion. G2 harbored significant MTAs in the 5′ flanking sequences 

(≤ 2 kb from the first ATG), which were considered to be promoter regions. G3 included significant 

MTAs within introns or 3′ noncoding sequences. G4 contained significant MTAs outside coding 

regions, and G5 contained polymorphisms but not significant MTAs.

Preliminary verification of causal genes by expression and mutation analysis

Expression data (transcripts per million, TPM) for the potential causal genes from previously mapped 

RNA-seq samples were downloaded from the Triticeae Multi-omics Center website 

(http://202.194.139.32/) (Ramírez-González et al., 2018). Total RNA extraction and cDNA synthesis 

from AvS and XZ9104 samples were performed following Liu et al. (2019). Quantitative real time 

PCR (qRT-PCR) primer sequences for the twelve candidate genes in the 612.9 kb region are provided 

in Table S12. Wheat TaActin (AB181991.1) was used as an internal reference for normalization, and 

transcript abundance estimates were based on three technical replicates each of three biological 

replicates per each genotype.

In addition, the function of candidate genes was also verified in a durum wheat mutant pool. The A
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mutants induced by ethyl methanesulfonate (EMS) from durum wheat cultivar Kronos have been 

sequenced using exome capture sequencing and contribute to the analysis of gene variations 

corresponding to phenotype (Henry et al., 2014). The lines Kronos1064, Kronos2338, Kronos3557, 

Kronos3545, Kronos2969, Kronos2619, Kronos3312, and Kronos3186 were kindly provided by Drs. 

Jiajie Wu and Fei Ni, Shandong Agricultural University. The stripe rust responses of these mutants 

were evaluated at the adult-plant stage under controlled greenhouse conditions.
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Figure Captions

Figure 1 Population structure of the 411 included wheat accessions. (a) Principal components 

analysis (PCA). (b) Neighbor-joining tree analysis. (c, d, e) Subgroups inferred by hierarchical 

clustering, kinship, and structure analysis. Vertical lines indicate genetic similarity thresholds used to 

classify accessions into two main groups (dashed lines) and five subgroups (dotted lines). (d) 411 × 

411 kinship matrix based on a simple matching of genetic similarities (IBS, identity by state). 

Separations among hierarchical-based groups are shown as horizontal dashed lines for main groups 

and as dotted-dashed lines for subgroups. (e) Matrices of membership coefficients of accessions 

corresponding to 2–5 hypothetical subpopulations derived from the STRUCTURE analysis.

Figure 2 Genome-wide association analysis results for the severity of stripe rust across ten tested 

environments. Assessed environments included (a) 2017-Jiangyou, (b) 2017-Tianshui, (c) 

2017-Yanlging, (d) 2018-Jiangyou, (e) 2018-Tianshui, (f) 2018-Yanlging, (g) 2019-Jiangyou, (h) 

2019-Tianshui, (i) 2019-Yanlging, and (j) BLUP (the best linear unbiased predictions). The horizontal 

line shows the genome-wide significance threshold –log10 (P) value of 3.4. The A, B, and D genomes 

are in blue-green, pale green, and orange, respectively. The QTL detected in this GWAS panel 

associated with the known Yr loci are listed in the corresponding chromosome.

Figure 3 Identification of the causal gene for stripe rust resistance associated with the peak on 

chromosome 7D. (a) Manhattan plot of single-polymorphism-based association analysis. Dashed line 

represents a significance threshold (−log10 P = 3.04). Significantly associated single nucleotide 

polymorphisms (SNPs) are shown as dark blue points, and other SNPs are shown as light blue points. 

(b, c) Local Manhattan plot of single-polymorphism-based association (top) and LD heatmap (bottom) 

surrounding the peak on chromosome 7D. Arrow indicates the position of nucleotide variations in 

TraesCS7D01G080300 (Yr18). Dashed lines indicate the candidate region for the peak. (d) The 

exon-intron structure of Yr18 and its DNA polymorphisms. del, deletion. (e) Disease severities were 

based on the haplotypes for Yr18 in different panels of the population. Differences between the 

haplotypes were statistically analyzed using Student’s t-test (*P < 0.05). (f) Stripe rust responses of 

near-isogenic lines (±Yr18) in the common wheat cultivar Avocet S background. Scale bar, 1 cm.

Figure 4 Candidate region associated with stripe rust resistance on chromosome 2B detected in A
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different GWAS panels. Manhattan plots showing the significant SNP associations for the QTL 

underlying stripe rust resistance detected within (a) an extensive genomic region (707.418–712.236 

Mb) using a panel of 411 spring wheat lines and (b) a refined region (707.668 to 708.346 ) using an 

independent validation population of 1045 wheat accessions. Grey horizontal dashed line represents a 

significance threshold (−log10 P = 4.85). Significantly associated SNPs in the two data sets are shown 

as dark blue points, and other SNPs are shown as light blue points. The upper-triangular halves of the 

linkage disequilibrium (LD, as r2) matrices between SNPs within the candidate region are shown as 

heat maps below the Manhattan plots. SNP names with red text in LD plots indicate the physical 

positions of SNPs with significant associations.

Figure 5 Identification of the causal gene for stripe rust resistance associated with the peak on 

chromosome 2B. (a) Manhattan plots of polymorphic DNA variants-based association analysis in the 

candidate region using resequencing data. (b) The HC genes in the candidate region. (c, d, e) 

Exon-intron structures of TraesCS2B01G512900, TraesCS2B01G513000 and TraesCS2B01G513100 

and their corresponding DNA polymorphisms with significant associations. (f, g, h) The relative 

expression levels of TraesCS2B01G512900, TraesCS2B01G513000, and TraesCS2B01G513100 in 

two cultivars (AvS and XZ9104) with extremely opposite YR phenotypes using qRT-PCR. Each bar 

represents the mean ±  SD of three biological replicates. (i) Disease severity data based on the 

functional variants in TraesCS2B01G512900 (M8), TraesCS2B01G513000 (M7), and 

TraesCS2B01G513100 (M1-M6) in the EMS mutants. (j) Stripe rust responses for different HIFs and 

their parents, Snb "S" (resistant parent, RP) and ZM9023 (susceptible parent, SP), and for the durum 

wheat cultivar Kronos (wild type, WT) and its mutant lines. Scale bar, 1 cm. (k) Haplotype genotype 

and frequencies in the candidate region and the core of the favorable allele combination are in the red 

box. (l) Disease severities were based on the haplotypes for YrSnb.1 in different panels of the 

population. The asterisks indicate significant differences among groups or lines at the P < 0.05 level 

(Student’s t-test).

Supplementary files

Figure S1 Circos diagram showing genome-wide physical distributions of filtered single nucleotide 

polymorphisms (SNPs) from the wheat 660K SNP array and average nucleotide diversity in each A
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chromosome. (a) The outer track is the physical size of each chromosome. Wheat chromosomes are 

represented in different colors. (b) SNP distribution represented by SNP numbers in 1-Mb windows of 

each chromosome. (c) Heatmap representing the numbers of matched high-confidence genes in 

10-Mb windows in each chromosome. Average nucleotide diversity was estimated by polymorphism 

information content (d) and expected heterozygosity (e) using a sliding window size of 1 Mb along 

the chromosome.

Figure S2 Genome-wide average linkage disequilibrium (LD) decay over physical distances. Plots of 

pair-wise single-nucleotide polymorphism LD r2 values as a function of inter-marker map distance 

(Mb) within three subgenomes (a) and each chromosome corresponding to subgenomes A (b), B (c), 

and D (d) based on IWGSC RefSeq v.1.0. The black bold dashed line represents the 

population-specific critical r2 value (0.1) beyond which LD is likely due to linkage.

Figure S3 Box plot distributions of seedling infection type (IT) for six Pst races.

Figure S4 Phenotypic distribution of the stripe rust responses of different wheat accessions. Box plot 

distributions of infection type (IT) (a) and disease severity (DS) (b) across multiple environments 

(BLUP, the best linear unbiased predictions; JY, Jiangyou; TS, Tianshui; YL, Yangling). Solid 

horizontal lines show medians. The half violin plots show the adult plant resistance density 

distribution in different environments. The raw data points overlying the box plots display the 

frequency of different tests. (c) Regression plot, histograms, and Pearson correlation coefficients (P = 

0.01) among different survey indicators or environments. Boxplot of IT (d) and DS (e) for different 

sub-populations in the diversity panel.

Figure S5 Regression plot, histograms and Pearson correlation coefficients (P = 0.01) for infection 

type (IT) and disease severity (DS) among different environments (YL, Yangling; TS, Tianshui; JY, 

Jingyou; 17, 18, 19 represent the 2016–2017, 2017–2018, and 2018–2019 cropping seasons, 

respectively).

Figure S6 Genome-wide association analysis results for stripe rust infection types across ten tested 

environments including (a) 2017-Jiangyou, (b) 2017-Tianshui, (c) 2017-Yanlging, (d) 2018-Jiangyou, 

(e) 2018-Tianshui, (f) 2018-Yanlging, (g) 2019-Jiangyou, (h) 2019-Tianshui, (i) 2019-Yanlging, and 
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(j) BLUP. The horizontal line shows the genome-wide significance threshold –log10 (P) value of 3.4. 

The A, B, and D genomes are in blue-green, pale green, and orange, respectively.

Figure S7 Chromosome positions of QTL identified in this study relative to previously mapped stripe 

rust resistance genes/QTL. Chromosome lengths were based on the physical Chinese Spring map. 

QTL-tagged SNPs identified in this study were labeled as “SNP”. Those with red fonts were 

potentially novel but require confirmation; those with blue fonts possibly correspond to previously 

reported Yr genes (Table 2).

Figure S8 Sequence alignment of TraesCS2B01G513100, TraesCS2B01G513000, and 

TraesCS2B01G512900 complete gene sequences to those alleles in other subgenomes.

Figure S9 The relative expression levels of all high-confidence genes in the candidate region in two 

cultivars (AvS and XZ9104) with extremely opposite YR phenotypes using qRT-PCR. Each bar 

represents the mean ± SD of three biological replicates.

Figure S10 The expression profile of TraesCS2B01G513100 in different tissues and organs of wheat. 

The picture was generated using the Wheat eFP Browser 

(http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi)

Table S1 Information and stripe rust responses for the 411 spring wheat lines included in this 

genome-wide association study diversity panel, the 1045 accessions in the validation set, and the 63 

resequenced samples.

Table S2 Information on 36,324 polymorphic haplotypes (represented by SNP probes) derived from 

the 660K SNP array.

Table S3 Functional location and type of substitution (synonymous and non-synonymous) within the 

coding sequence for single-nucleotide polymorphisms (SNPs) present in the diversity panel of spring 

wheat lines.

Table S4 Summary of the genetic diversity in the sub-genomes and chromosomes of the 1045 

included wheat accessions.
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Table S5 Estimates of variance components and heritability of phenotypic responses (infection type, 

IT; and disease severity, DS) to Puccinia striiformis f. sp. tritici (Pst) under multiple environments in 

the 411 spring wheat accessions included in this study.

Table S6 Significant SNP–trait associations.

Table S7 Analysis of the estimated functional importance of each nucleotide polymorphism in 

candidate regions on chromosome 7D and 2B.

Table S8 The genotype information of heterozygous inbred families (HIFs) from Zhengmai 9023 

(ZM9023)/Sunbird "S" (Snb "S") on chromosome 2B and near-isogenic lines (±Yr18) in Avocet S 

background on chromosome 7D.

Table S9 DNA variations derived from resequencing data in the candidate genomic region (612.9 kb) 

of YrSnb.1-2BL.

Table S10 Information on Kronos mutants.

Table S11 Variations in the TraesCS2B01G513100 genomic region using PCR-based sequencing.

Table S12 The molecular markers or primers used in this study.
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Table 1 Summary of the genetic diversity in the sub-genomes and chromosomes of 411 wheat 

accessions and evaluation of the effective number of independent SNPs, including suggested P-value 

thresholds.

Chromosom

e

No. of 

markers

Effective 

number

Suggested P

-value

% 

markers

Length 

(Mb)

Marker 

density

He PIC LD 

(Mb)

1A 23,120 5,255 1.90E-04 6.11 594.02 38.92 0.68 0.27 2.37

2A 26,079 5,825 1.72E-04 6.89 780.76 33.40 0.75 0.30 2.38

3A 16,040 4,234 2.36E-04 4.24 750.73 21.37 0.70 0.28 1.64

4A 19,191 4,170 2.40E-04 5.07 744.54 25.78 0.66 0.27 4.06

5A 20,430 4,533 2.21E-04 5.40 709.76 28.78 0.74 0.30 4.14

6A 15,935 3,554 2.81E-04 4.21 617.97 25.79 0.69 0.28 2.40

7A 24,184 6,124 1.63E-04 6.39 736.69 32.83 0.65 0.26 2.03

1B 19,684 4,748 2.11E-04 5.20 689.38 28.55 0.68 0.27 4.15

2B 27,097 6,988 1.43E-04 7.16 801.25 33.82 0.70 0.28 2.88

3B 44,479 7,352 1.36E-04 11.75 830.7 53.54 0.57 0.23 7.45

4B 12,690 2,231 4.48E-04 3.35 673.47 18.84 0.71 0.28 3.09

5B 31,251 6,135 1.63E-04 8.26 713.02 43.83 0.72 0.29 4.35

6B 21,231 5,523 1.81E-04 5.61 720.95 29.45 0.72 0.29 2.95

7B 16,396 3,221 3.10E-04 4.33 750.61 21.84 0.68 0.27 3.29

1D 10,210 2,561 3.90E-04 2.70 495.44 20.61 0.71 0.28 1.98

2D 10,119 3,453 2.90E-04 2.67 651.81 15.52 0.72 0.29 3.28

3D 6,748 6,424 1.56E-04 1.78 615.48 10.96 0.62 0.25 2.29

4D 3,664 1,024 9.77E-04 0.97 509.85 7.19 0.68 0.27 0.89

5D 7,190 2,227 4.49E-04 1.90 566.04 12.70 0.66 0.27 0.86

6D 7,052 2,242 4.46E-04 1.86 473.56 14.89 0.69 0.27 0.62

7D 9,182 1,010 9.90E-04 2.43 638.65 14.38 0.67 0.27 1.09

A genome 144,979 38.31 4934.47 29.38 0.70 0.28 2.60

B genome 172,828 45.67 5179.38 33.37 0.68 0.27 5.50

D genome 54,165 14.31 3950.83 13.71 0.68 0.27 1.30A
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Total 371,972 　 14064.68 26.45 0.69 0.28 3.20

Average 3.23E-04
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Table 2 Significant quantitative trait loci (QTL) that are associated with adult plant stripe rust resistance in multiple environments.

QTL name Chr. Tag-marker Genetic 

position (cM)†

Physical 

position (Mb)

R allele and 

its ratio ‡

−Log10(P) R2 (%) Environments§ Postulated or linked 

genes

QYr.nwafu-1AL 1AL AX-108800039 (SNP1) 278.60 587.45 T/C (0.33) 3.58–3.99 1.9–3.1 IT and DS: All IWA3215

QYr.nwafu-1BL 1BL AX-94947139 (SNP2) 245.57 673.96 C/T (0.24) 3.37–3.61 1.5–2.7 DS: All Yr29

QYr.nwafu-2AS 2AS AX-109458303 (SNP3) 3.41 24.41 T/G (0.13) 3.62–3.82 1.7–3.0 DS: All Yr17

QYr.nwafu-2AL.1 2AL AX-108752496 (SNP4) 426.3 574.70 T/C (0.63) 3.81–4.59 2.8–4.5 IT and DS: All Yr32

QYr.nwafu-2AL.2 2AL AX-111630281 (SNP5) 508.27 742.15 G/A (0.87) 3.55–4.86 3.6–4.9 IT and DS: All Novel

QYr.nwafu-2BS 2BS AX-108948038 (SNP6) 54.636 108.67 G/A (0.06) 3.40–4.85 2.9–4.8 IT and DS: All YrNP63

QYr.nwafu-2BL.1 2BL AX-109485942 (SNP7) 86.68 576.10 G/A (0.46) 3.86–5.00 2.9–5.0 IT and DS: All Many QTL

QYr.nwafu-2BL.2 2BL AX-110363517 (SNP8) 93.34 708.24 G/C (0.61) 4.90–6.74 5.0–9.6 IT and DS: All YrSnb.1 (Novel)

QYr.nwafu-3AL 3AL AX-111810295 (SNP9) 296.22 732.09 C/T (0.93) 3.50–4.81 2.5–4.6 IT and DS: All Novel

QYr.nwafu-3BS 3BS AX-94578994 (SNP10) 2.28 2.49 G/A (0.70) 3.45–4.32 2.5–4.4 IT and DS: All Yr30

QYr.nwafu-3BL.1 3BL AX-108870372 (SNP11) 56.892 586.15 G/A (0.86) 3.90–5.93 3.9–6.1 IT and DS: All Yr80

QYr.nwafu-3BL.1 3BL AX-109534273 (SNP12) 189.84 793.05 T/C (0.21) 3.16–3.77 2.2–3.8 IT and DS: All YrSf

QYr.nwafu-4BS 4BS AX-112287589 (SNP13) 58.5 68.89 T/C (0.12) 3.44–5.22 2.9–5.1 IT and DS: All Novel

QYr.nwafu-4BL 4BL AX-89420204 (SNP14) 97.83 642.70 G/A (0.80) 3.40–3.56 3.2–3.8 DS: All YrRC (Novel)

QYr.nwafu-6BS 6BS AX-110586294 (SNP15) 46.69 149.3 C/T (0.89) 3.40–4.52 3.4–3.9 IT and DS: All Yr78

QYr.nwafu-6BL 6BL AX-111699663 (SNP16) 50.1 599.08 C/A (0.18) 4.28–5.44 2.8–4.6 DS: All YrSnb

QYr.nwafu-7AL 7AL AX-110983606 (SNP17) 304.82 675.26 G/A (0.70) 3.71–4.65 3.3–4.8 IT and DS: All Yr75

QYr.nwafu-7BL 7BL AX-110448553 (SNP18) 119.05 553.43 C/A (0.35) 3.05-4.46 1.5-3.8 DS and IT: ①②③④

⑤⑥⑩

Yr39+Yr2

QYr.nwafu-7DS 7DS AX-109857040 (SNP19) 87.71 47.71 A/G (0.34) 3.47–3.96 3.1–4.2 DS: All Yr18
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† Position of each SNP based on 660K wheat consensus map (Cui et al. 2017)
‡ Resistance allele for each QTL is indicated by underlining, along with its ratio

§ IT: Infection type; DS: Disease severity; Environments, ①: 2017-Yangling, ②: 2018-Yangling, ③: 2019-Yangling, ④: 2017-Tianshui, ⑥: 2018-Tianshui, 

⑦: 2019-Tianshui, ⑧: 2017-Jingyou, ⑨: 2019-Jingyou, ⑩: BLUP (the best linear unbiased predictions) 
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