衰老是有机体(动物、植物和微生物)生长发育和世代交替的重要生物学过程。在植物特别是作物衰老过程中,伴随着叶片等营养器官的黄化和衰老,碳、氮等营养物质进行从“源”(叶等光合器官)到“库”(种子等贮藏器官)的征调和转运。因此,高等植物叶片衰老的启动和进程对种子发育至关重要,是影响作物产量和果实品质的关键因素。
近日,我室郁飞教授研究团队在国际植物科学期刊Nature Plants以长文形式(article)在线发表了题为“Noncanonical ATG8-ABS3 interaction controls senescence in plants”的研究论文。该论文揭示了ATG8以不依赖于自噬途径的方式与ABS3亚家族MATE转运蛋白互作控制植物衰老的分子途径,这也是植物中首次发现ATG8蛋白独立于自噬途径的新功能,同时这一途径在模式植物拟南芥和主要粮食作物小麦中以保守的方式发挥作用,为未来人工调控作物衰老进程提供了重要的理论支撑。
图1. ABS3亚家族MATEs以不依赖于自噬途径的方式控制衰老
该研究利用碳缺乏诱导植物衰老研究体系,发现ABS3亚家族MATE转运蛋白促进植物叶片衰老和蛋白质降解, ABS3亚家族 MATE 基因的四重和六重缺失突变体对碳缺乏诱导的植物衰老表现出极强的抗性。 MATE 基因的四重突变体能够抑制自噬缺陷突变体在碳缺乏胁迫下的早衰表型,表明自噬缺陷时,衰老过程启动和进程依赖于ABS3亚家族MATE蛋白的功能。有趣的是,ABS3亚家族MATE蛋白在晚期内体上与自噬途径的关键蛋白ATG8相互作用,ATG8-ABS3互作是ABS3促进衰老和蛋白质降解的前提条件,但这一互作并不依赖于自噬途径或ATG8蛋白C端的切割和脂化,代表了ATG8的一个不依赖于自噬途径的新功能。对小麦ABS3和ATG8同源蛋白的研究发现ATG8-ABS3互作调控衰老的范式在双子叶和单子叶植物中保守。基于这些发现,该研究提出了ABS3介导的促进衰老的途径与抑制衰老的自噬途径共享ATG8,这两个途径的平衡协同调控植物衰老进程的模型。
图2. 控制植物衰老中ATG8-ABS3互作模式
生命科学学院博士生贾敏、青年教师刘夏燕为该论文的共同第一作者,郁飞教授为该论文的通讯作者。哈佛大学医学院Jen Sheen教授实验室也参与了该研究。该研究工作得到了国家自然科学基金和西北农林科技大学“双一流”旱区作物与逆境生物学学科群和青年英才计划的资助。
论文链接:
https://www.nature.com/articles/s41477-018-0348-x