发表论文

Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew

作者:  来源:10.1093/plphys/kiae249  发布日期:2024-05-09  浏览次数:

Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew

Zhao, Ting, Congbo Huang, Na Li, Yaqi Ge, Ling Wang, Yujin Tang, Yuejin Wang, Yan Li and Chaohong Zhang

Plant physiology

https://doi.org/10.1093/plphys/kiae249

ABSTRACT

Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grape (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grape leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew, while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.