国家“万人计划”科技创新领军人才

王晓杰

作者:  来源:  发布日期:2016-08-15  浏览次数:

  一、基本信息

  王晓杰,男,教授,博士生导师。

  受教育经历

  2004/09-2009/07,西北农林科技大学,植保学院,博士

  2001/09-2004/07,西北农林科技大学,植保学院,硕士

  1997/09-2001/07,莱阳农学院,园艺系,学士

  工作经历

  2015年至今,西北农林科技大学,植保学院,教授

  2012/01-2014/12,西北农林科技大学,植保学院,副研究员

  2009/09-2011/12,西北农林科技大学,植保学院,助理研究

  学术兼职

  中国植物病理学会青年工作委员会副主任

  中国植物保护学会青年工作委员会副主任

中国植物生理与植物分子生物学学会微生物分子互作专业委员会副主任

中国植物病理学会抗病育种专业委员会秘书

  个人荣誉

  2018年入选中国青年科技奖

  2017年入选“万人计划”科技创新领军人才

  2016年入选科技部中青年科技创新领军人才

2015年入选科技部"创新人才推进计划"中青年科技领军人才

  2015年入选中组部青年拔尖人才支持计划

  2014年获批国家优秀青年科学基金

  2013年荣获陕西省青年科技奖

  2013年入选陕西省青年科技标兵

  2012年入选教育部“新世纪优秀人才”

  2012年入选陕西省青年科技新星

  2011年入选全国百篇优秀博士学位论文

  二、主要研究方向

  由条形柄锈菌小麦专化型( Puccinia striiformis  f. sp. tritici )引致的小麦条锈病发生范围广、传播快、流行频率高、危害严重小麦生产安全。病菌频繁变异导致品种抗性丧失是条锈病频繁流行致灾的根本原因,一直是病害防控的难点。条锈菌为专性活体营养寄生真菌,侵染过程中主要形成吸器从寄主中汲取营养物质,进行致病和繁殖。因而,我们的研究针对病菌的侵染致病特性,从不同层次开展条锈菌吸器效应蛋白调控寄主免疫、小麦受体识别、传递和激发寄主防御反应等研究,以期系统深入解析条锈菌与小麦的互作机理。并基于研究发现,开发病害防控新策略。特别是,利用基因编辑等现代生物学技术结合传统方法创制新型广谱的抗病材料,为小麦抗病传改良提供资源和技术支撑。

  三、发表论文情况

  近五年,在Nature Communications, New Phytologist, The Plant Journal, Environmental Microbiology, Journal of Experimental Botany, Molecular Plant-Microbe Interactions、中国农业科学等国内外期刊发表研究论文60余篇,其中SCI论文40余篇。

 代表性论文:


[1] A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. Plant Biotechnology Journal, 2020, 18(8): 1830-1842
[2] Haustoria – arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2020, 21(1):83-94
[3] WRKY transcription factors shared by BTH-induced resistance and NPR1-mediated acquired resistance improve broad-spectrum disease resistance in wheat. Mol Plant Microbe Interact, 2020, 33(3):433-443
[4] An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 2019, 10(1):5571
[5] Candidate Effector Pst_8713 Impairs the Plant Immunity and Contributes to Virulence of Puccinia striiformis f. sp tritici. Frontiers in Plant Science, 2018, 9:1294
[6] Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene, New Phytologist, 2017, 215(1): 338-350
[7] Two distinct Ras genes from Puccinia striiformis exhibit differential roles in rust pathogenicity and cell death. Environmental Microbiology, 2016, 18(11): 3910~3922
[8] TaSYP71, a Qc-SNARE, Contributes to Wheat Resistance against Puccinia striiformis f. sp tritici. Frontiers in Plant Science, 2016, 7: 544
[9] Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp tritici. Physiologia Plantarum, 2016, 157(1): 95-107  
[10] TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction. Physiologia Plantarum, 2016, 156(3): 262-277
[11] TaADF3, an Actin-Depolymerizing Factor, Negatively Modulates Wheat Resistance Against Puccinia striiformis. Frontiers in Plant Science,2016, 6: 1214
[12] Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust. Frontiers in Plant Science. 2015, 6: 469
[13] Characterization of protein kinase PsSRPKL, a novel pathogenicity factor in the wheat stripe rust fungus. Environmental Microbiology, 2015, 17(8): 2601-2617  
[14] TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. The Plant Journal 2014, 78(1):16-30
[15] Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust ( Puccinia striiformis f. sp. tritici ). Journal of Experimental Botany, 2014, 65(17):4807-4820.
[16] Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2014, 1839(1):1-12
[17] The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 2014, 15(3):284-96.
[18] A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Molecular Biology, 2014 84:589-603.
[19] TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Molecular Plant Pathology, 2013, 14(7):728-39.
[20] High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communicatios, 2013, 4:2673, DOI: 10.1038/ncomms3673
[21] Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis . Journal of Experimental Botany, 2013, 64 (10):2955-2969.
[22] Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis . Journal of Experimental Botany, 2012, 63(12):4571-4584.
[23] TaDAD2, a negative regular of PCD, is important for the interaction between wheat and the stripe rust fungus. Molecular Plant-Microbe Interactions, 2011, 24:79-90.
[24] Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10:9.
[25] cDNA-AFLP analysis reveals differential gene expression in compatible reaction of wheat challenged with Puccinia striiformis f. sp. tritici . BMC Genomics, 10:289.
[26] Characterization of a pathogenesis-related thaumatin-like protein TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum, 2010, 139:27-38.

  四、联系方式

  通信地址:陕西杨凌邰城路3号西北农林科技大学南校区科研楼2101

  邮政编码:712100

  联系电话:029-87080063

  E-mail:wangxiaojie@nwsuaf.edu.cn

  欢迎有志青年加入团队,我们一起共勉!

编辑:0
终审:0